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Abstract. Given adynamical system and a functififrom the state space to the real numbers, an
optimal orbit for f is an orbit over which the time averageofs maximal. Inthis paper we consider
some basic mathematical properties of optimal orbits: existence, sensitivity to perturbatjans of
and approximability by periodic orbits with low period. For hyperbolic systems, we conjecture that
for (topologically) generic smooth functions, there exists an optimal periodic orbit. In support of
this conjecture, we prove that optimal periodic orbits are insensitive to sthakrturbations off,

while the optimality of a non-periodic orbit can be destroyed by arbitrarily s@tapierturbations.

In case there is no optimal periodic orbit for a givénwe discuss the question of how fast the
maximum average over orbits of period at mgsmust converge to the optimal average,;as
increases.

AMS classification scheme numbers: 58F11, 58F15, 05A99

1. Introduction

Recently, the following optimization problem [1,2] has been posed: which orbit(s) on a given
attractor yield the largest time average of a given smooth fungtii®ne motivation for this
question is as follows. A popular method of ‘controlling chaos’ [3, 4] involves using small
perturbations to stabilize the system near an unstable periodic orbit that is embedded in the
chaotic attractor. A typical chaotic attractor contains infinitely many periodic orbits. Which
one should be used in a given application? Here is a natural way to select among thgim. Let
be a smooth?) function from the phase space Bthat measures the ‘performance’ of the
output of the system at a given time. Then, choose an orbit (which may not be unique) that
maximizes the time average ¢@f i.e. an orbit that has the best average performance. If such
an orbit exists, we call it an optimal orbit. More generally we can consider optimization over
all orbits within the attractor. Is the optimum average realized by an unstable periodic orbit?
If so, will this orbit have low or high period?

An important feature of chaotic systems is ergodicity. It is often assumed, though rarely
proved, that a chaotic attractor hamatural measurgi.e., for typical initial conditions (in
the sense that the exceptional subset of the basin of attraction has Lebesgue measure zero),
the invariant measures generated by their trajectories are the same. Nonetheless, there will be
many other orbits that generate different invariant measures. The invariant measure generated
by an optimal orbit will not be the natural measure, except in very special cases (see section 3).
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Hunt and Ott [1, 2] investigate numerically some one- and two-dimensional maps and
several one-parameter families of performance functions. Considering unstable periodic orbits
up to period 24, they observe that in most cases (with respect to Lebesgue measure on the
parameter space), the average is optimized by an orbit with low period. Furthermore, they
argue that although there are cases in which it seems that for a set of parameters with Lebesgue
measure zero, no optimal periodic orbits can be found, the corresponding optimal non-periodic
orbits are special in the sense that their limit sets have zero topological entropy and zero fractal
dimension (in particular, they are not dense in the attractor). They conjecture [1, 2] that,
typically, there exists an optimal periodic orbit for almost every parameter value with respect
to Lebesque measure. We formulate a similar but more precise conjecture below, replacing its
measure-theoretic aspect with the notion of topological genericity, which callgerseticif
it contains a countable intersection of open dense sets.

The purpose of this paper is to mathematically establish some fundamental properties
of optimal orbits: existence, sensitivity to parameter perturbations, and approximability by
periodic orbits with low period. We consider only discrete-time systems (maps), and we first
prove existence assuming only continuity of the map and the performance function. Thereatfter,
we assume that these functions are smooth and that the dynamics are hyperbolic, in the sense
that the map either is a diffeomorphism satisfying axiom A or is noninvertible and uniformly
expanding. In sections 3 and 4 we prove some results related to the following conjecture.

Conjecture 1.1. For an axiom A or uniformly expanding systefhand a (topologically)
generic smooth functioni, there exists an optimal periodic orbit.

In applications it is also of considerable interest to know how close one can come to
the optimal average by considering only periodic orbits with low period. We formulate this
guestion in terms of how fast, in the worst case, the maximum average over orbits of period at
mostp must converge to the optimal average pas> co.

Question 1.2.For an axiom A or uniformly expanding syst@hand a smooth functioif, let
d, be the difference between the optimal averagg ahd its maximum average over periodic
orbits with period at mosp. How fast can one prove tha}, — 0asp — co?

In corollary 3.4 we show thaf, must decay faster than a power @f but in all of the
examples we have been able to analyze, the decay is much faster.

During the course of preparing this paper, we learned that similar problems have been
studied in different contexts. In particular, in his study of Lagrangian flowsié\ja] proves
that for a generic Lagrangidn there is a unique invariant probability measure that minimizes
the average of.. Inthat paper, he also poses the following question: is it true that for a generic
LagrangianLZ, this minimizing measure is supported on a periodic orbit? (See also [6, 7]
for further results on minimizing measures for Lagrangian systems.) Bousch [8] considers
the optimal averages of c@r (x — 0)), whered is a parameter, over orbits of the doubling
mapx — 2x (mod 1). He shows that for &, there is a unique optimal invariant measure,
whose support is contained in a semicircle. (It follows that the support must have Hausdorff
dimension zero [9].) Further, he shows that for almost evefwith respect to Lebesgue
measure), the optimizing invariant measure is supported on a periodic orbit. (These results
were conjectured by Jenkinson [10, 11], and the latter result was conjectured independently
by Hunt and Ott [1,2].) More generally, Contrerisal [12] considerC* expanding maps of
the circle and the class @f* performance functiong, where O< « < 1. They prove that
for (topologically) genericf, there is a unique maximizing measure. Furthermore, within the
subset ofC“ functions consisting of the closure of the union@f functions for allg > «,
they show that generically (in thé* topology) the maximizing measure is supported on a
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periodic orbit. However, this subset is not dense in the set @f“aflinctions, so the analogue
of conjecture 1.1 foC* functions is still open.

In section 2 we consider the existence of optimal orbits and invariant measures. We
allow all orbits, even those for which the performance average does not exist, using a ‘limsup’
average in that case. We show for continuous dynamical systems and continuous performance
functions, there must exist an optimal orbit that is measure-recurrent (i.e., contained in the
support of the invariant measure that it generates).

In section 3 we restrict our attention to axiom A and uniformly expanding systems and
Lipschitz performance functions. We show, using the quantitative versions of the standard
shadowing and closing lemmas for hyperbolic systems, that either an optimal periodic orbit
exists, or every optimal orbit has no periodic points in its closure. A modification of this
argument shows that there always exists an optimal orbit supported on a minimal set. We also
show that the optimal average can always be approximated algebraically well by averages over
optimal orbits with increasing periods; this is a partial answer to question 1.2.

In section 4 we address conjecture 1.1 more directly by showing (still focusing on axiom A
and uniformly expanding systems and Lipschitz performance functions) that optimal periodic
orbits are more robust than non-periodic ones, in the following sense. We prove that each
periodic orbit is optimal for some open set of Lipschitz performance functions, but if a non-
periodic, measure-recurrent orbit is optimal for some Lipschitz performance funtithen
there exist arbitrarily small Lipschitz perturbations j6ffor which that orbit is not optimal.

We also indicate how to extend these results todhéopology.
Finally, in section 5 we summarize and further discuss the main results in this paper.

2. Existence

In this section we establish the existence of optimal orbits in a general setting. Though
the discussion here could be simplified by discussing only optimal invariant measures, our
techniques in the following sections require the analysis of specific orbits.

We begin with a precise definition of an optimal orbit.

Definition 2.1. Let M be a compact smooth Riemannian manif@ld, M <— be a continuous
map, andf (x) be a real-valued continuous function of. Let

1 N
Sn() =2 > F(Th),
k=1

and let (f)(x) = limy_ o Sy(x) if the limit exists. If{f)(xo) is defined, and for each
x € M, (f)(x0) = limsupy_, ., Sy(x), then the orbit o is called anoptimal orbit

From the mathematical point of view, a fundamental question is: Does an optimal orbit
always exist?

Foranyx € M, if the weak limit of S, 874, exists asV — oo, wheres, is the Dirac
measure concentratedsagexists, then we say generatesn invariant measure and this limit
measure is the measure thagjeneratedy x. We say a point € M and its orbit areneasure
recurrentif (i) x generates an invariant measure; andx(iiles in the support of the measure
generated by. Thew-limit set of a pointx € M is defined aso(x) = (- o U, {T5x}.

We observe that ik is measure recurrent, thesn(x) is equal to the support of the measure
generated by. Now we give an affirmative answer to our question about the existence of
optimal orbits in the following proposition.

Proposition 2.2. Under the hypothesis of definition 2.1, there always exists a measure-
recurrent optimal orbit.
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In the remainder of this section we prove proposition 2.2.

Lemma 2.3. For everyx € M, there exists an invariant measure such that/ f du, =
lim supy_, o, Sy (x).

Proof. There exists a subsequeng®y, (x)} that converges to lim syp, ., Sy(x). Define
Uy N, = Ni Z,ﬂil 3rx¢. Since the space of Borel probability measures is compact in weak
topology, there exists a subsequencgaf y, } that converges weakly to a probability measure
uy. Itis easy to check that, is invariant. Moreover/ f du, = limsupy_, ., Sy (x). O

Lemma 2.4. There exists an invariant measuresuch that

/fdv > lim supSy (x), forevery x € M.

N—o00

Proof. Let 8 = sup limsupy_ . Sy(x), and let {x;} be a sequence for which
lim supy_, ., Sv(x;) — B asi — oo. Letpu,, be asinlemma 2.3. There exists a subsequence
of {u,,} that converges weakly to an invariant measurehence/ f dv = 8. O

Proof of proposition 2.2. Of all the invariant measures that satisfy lemma 2.4, there is at least
one ergodic measuge(by the ergodic decomposition theorem; see e.g. [13, section 4.1]). And
by the Birkhoff ergodic theorem, almost every point with respegt trenerateg.. Therefore,

we can select from the support oft. Thenx is a measure-recurrent optimal orbit. O

3. Minimality

Given a chaotic dynamical system, we cannot expect every performance function from a given
class, such ag*?, to have an optimal periodic orbit. For example, given any compact invariant
setS that contains no periodic orbits, one can constifitd be zero or§ and negative at all
other points. We consider, in this section, the properties that an optimal non-periodic orbit
must have in the case that no optimal periodic orbit exists. For example, is it possible that
such an orbit is dense i? We show in proposition 3.3 that the answer to this question is
essentially no for axiom A and uniformly expanding systems. In fact, proposition 3.3 implies
that a dense orbit can be optimal only if the averafjeis the same for all orbits on.

Let T be a diffeomorphism, and be a compact invariant set. We sayis hyperbolic
if there exist a continuous splitting, M = E; ® E, and positive constant§, 1 and«
with A < 1 < « such that ()DT(E;) = E;,i = 1,2; (ii) forall v € E; andn > 0,
|IDT " (v)] < Cx"|v|; and (iii) for all v € E; andn > 0, |[DT"(v)| < CA"|v|. We say a
pointx € M is non-wanderindf for every neighbourhood of x, there exista > 0 such that
T"(U)( U # @. Let2 be the set of non-wandering points fBr We sayT" satisfiesaxiom A
if Q is hyperbolic and periodic orbits are dens&in Notice that ifx is measure recurrent,
then{Tix}?°, = w(x) C Q, and thereford" is hyperbolic on{T x}2,,.

Standard definitions of hyperbolicity do not alldto be non-invertible. However, it is
well known that certain non-invertible maps (like the 2od 1 map) share many properties
with hyperbolic diffeomorphisms. In particular, we find that for our purpose, we can include
with axiom A diffeomorphisms, those non-invertitdg maps that areniformly expanding
i.e.,thereexists > 1suchthatDT (x)v| > «|v|forall pointsx and tangent vectois (Notice
that we do not allow piecewise smooth expanding maps like tent maps in this definition.)
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Standing hypothesis.Inthe rest of this paper we assutfiés either an axiom A diffeomorphism
or non-invertible uniformly expanding map. Also, we require the performance fungtton
be Lipschitz continuous.

For § > 0, we say an orbi{7'x}?°, comes withins of a periodic orbit{y =
TPy, Ty, ..., TP"1y} if there existsn > 0 such thad(T"*x, T'y) < § (i.e. the distance
between these two points in Riemannian metric) fat 0 < p.

The main technical result in this section is the following proposition.

Proposition 3.1. Let {T"x}%°, be a measure-recurrent optimal orbit fgt. Then there exist
coandc; > Osuch that ifs > 0is sufficiently small, the following statements hold.

(a) If forsomen andp, d(T™x, T™*Px) < §/co, then there exists a periogd-orbit {T"y}{:ol
such thatmaxg; -, d(T"*x, T'y) < §; in other words,{T’”*"x}i”;O1 is §-shadowed (see
definition 3.6) by{T7 y}/ .

(b) If {T”y}f’_‘o1 is a periodyp orbit and{7T'x} comes withirs of {77y}, then( f)(x) —c18/p <

() < (fHx).
We prove proposition 3.1 later. Now we present a few consequences of this proposition.

Corollary 3.2. Let {T'x}%°, be a measure-recurrent optimal orbit fof. Then for every
periodic pointy € w(x), (f)(y) = (f)(x).

Proof. Let {T'y} C w(x) be a periodp orbit. Then there exista; — oo such that
lim;_ e T™x = y. It follows that {T'x} comes withins of y for all § > 0, so by

proposition 3.1(b){ /) (y) = (f)(x). O

A consequence of corollary 3.2 is that if there are no optimal periodic orbits, then every
measure-recurrent optimal orbit has the property that-iimit set contains no periodic orbits.
Moreover, using similar reasoning, we can prove the following proposition.

Proposition 3.3. For each f, there exists a measure-recurrent optimal orbit whose closure is
a minimal invariant set. (By ‘minimal’ we mean that the set has no proper, closed, nonempty
subset that iF -invariant.)

If there are no optimal periodic orbits, or there exists only an optimal periodic orbit
with a high period, are there any periodic orbits with low period that yield an ‘approximately
optimal’ average? When controlling a chaotic system with small perturbations, as discussed in
the introduction, it may only be practical to consider low-period orbits. Though, of course, it
is impossible to be precise in an abstract setting about how close to the optimum performance
function average one can come using only ‘low’-period orbits, we can consider the rate of
convergence to the optimal average as the maximum period increases. This is the point of
guestion 1.2 in the introduction. In the following corollary of proposition 3.1 we answer this
question, partially, in terms of the ‘worst case’ rate of recurrence of the optimal orbit. In
particular, for an arbitrary trajectoy?” x} and a positive integep, we definee,(x) as the
closest recurrence in the trajectory withiriterations, i.e.g,(x) = inf{|Tx — TVx| : 0 <
li — j| < p}. (Notice that we consider recurrences between any two points in the trajectory,
not just recurrences to the initial condition.)

Corollary 3.4. Let {T'x}?°, be a measure-recurrent optimal orbit fgf. Then there exists
C > 0such that for allp, there exists a periodic orbitT"’ y,} of period at mosp such that
(f)(yp) > (f)(x) — Ce,(x). Furthermore, we havef)(y,) > (f)(x) — Cp~Y/™, wherem
is the dimension of the ambient manifatl



1212 G Yuan and B R Hunt

Proof. Lete, = ¢,(x). There exist integers ands such that 0< s —r < p and
d(T"x, T*x) < 2¢,. From proposition 3.1(a)Tix}f;,1 can be(2cqe,)-shadowed by a period-
(s —r) orbit{T"y,}. From proposition 3.1(b),

(FY3p) > (f)(x) = 2c1c0€,(s — 1)L = (f)(x) — 2c1c0€ ).

There existg’ > 0 such that for every > 0 and every set op points inM, the smallest
separation between any two points is bounded py ™. Thus,e, < ¢’p~Y/™. The previous
equation yields

() > (/) @) — 2 ereop ™.
Let C = max{2cicoc’, 2¢1¢0} to complete the proof. O

Remark 3.5. In terms of question 1.2, we have shown tat< Cp~Y/". One may be able

to improve this estimate by not throwing away the tésm- )~ above, but we think that the
best opportunity for improvement lies in using the dynamics & improve the geometric
estimatee, < ¢’p~™. Indeed, for the non-periodic optimal orbits in the example studied
in[1,2,8,10,11], one can show thaj decreases exponentially, i.e,, < ¢ exp(—ap). What

is the ‘worst case’ for the rate of decrease-gP We think that this is an interesting but difficult
problem.

In the remainder of this section we prove proposition 3.1, but first we need some
preparations.

Definition 3.6. A sequenca = {x,»}f?zu C M is called as-pseudo-orbiff d(Tx;, xj+1) < &
forall a < i < b. We sayx is e-shadowedby the orbit ofx € M if d(T'x, x;) < € for all
a<i<hb.

Lemma 3.7 (Anosov—Bowen shadowing lemmajf A is a compact hyperbolic invariant set,
then there existy > 0 and an open neighbourhodd > A such that for everg > 0, every
§-pseudo-orbit inU is (cod)-shadowable.

Our statement of the shadowing lemma is stronger than the standard version (for example,
see [13, section 18.1]) in that it says that the shadowing distance is bounded by the noise level
3 multiplied by a constanty,. However, this can be easily deduced from the proof of the
shadowing lemma.

The following lemma strengthens the usual version of the Anosov closing lemma.

Lemma 3.8 (see [13], section 6.4).et A be a compact hyperbolic invariant set fér Then
there exist an open neighbourhobd> A, positive numbersy, €g, andi € (0, 1) such that:

(@) ifTix e U,fori =0,...,nandd(T"x, x) < €y then there exists a periodic pointwith
T"y = y such that

d(T'y, T'x) < cod™MEn=0 g(T"x | x);

(b) for every positive integer, x € A andy € U such thatd(T'x, T'y) < o, for
i=0,...,n,

d(T'x, T'y) < cod™ =D (g(x, y) +d(T"x, T"y)).
Remark 3.9. If T is non-invertible and uniformly expanding, then both the shadowing and

closing lemmas (in the form of lemmas 3.7 and 3.8) still hold, with the replacement of the
hyperbolic invariant set\ by the whole manifold/.
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In the remainder of this section, we fix our choices of the constgntg andX so that
lemmas 3.7 and 3.8 hold.
Lemma 3.10.Let {T'x}%°, be a measure-recurrent optimal orbit fgf. Then there exists
¢y > Osuchthatifs > 0is sufficiently small and (7" *7x, T"x) < §, then

/

)

< ad
P

’ Zf(T’”” — (f)x)

Proof. Let L > 0 be a Lipschitz constant fof. From lemma 3.8(a), there exists a periodic
pointy e M with TPy = y’ such thatd(T"*x, T'y") < coA™nEr=Dg§ for 0 < i < p.
Therefore,

1 p—1 ) L p—1
'_ Z f(Tm+lx) Z |f(Tm+l (le/)| < - Zd(Tmﬂx Tty/)
P iz P izo
L= 2coL$
= )\'mln(t,p—l)(s g . 3.1
= ;C" d—Mp &1
Let¢y = 2coL /(1 — A). Then (3.1) yields
m+p 1 A

C15

)
= Z FTx < (HON+ 2 < (oo + 22
p p

It remains to be shown that there exisis> ¢; such that

m+p 1
18

= Z F(T'0) > (@) = =

We begin by constructlng a pseudo-orbit as follows. Assyp&|| < K andK > 1.
Let k1 be the smallest integer such thatr*x, T"x) < §/K”. Given kj, letkj.+1 be the
smallest integer such tha(7%+x, T"x) < §/K” andk;«1 — k; > p. Throw out all the
pieces{T*ix, Th*1x, ..., T**P~1x} from {T'x}>°,. Renumber the remaining sequence, and
write it as{x/}%2,. Smced(T’"*”x T"x) < 6,

d(Th*Px, TN x) <d(T**Px, T""Px) +d(T*x, T"x) +d(T"™*Px, T"x)
1) 1)
< KP—+—+§ < 35.
Kr Kp
Thus,{x/}?2, is a(38)-pseudo-orbit. By lemma 3.7, there exisgs> 0 (which depends only
onT) such that this pseudo-orbit {8cy8)-shadowed by a true orbif’ z}2,,.

/+1

The sequencéx/}2, is made up of segmentdx};; +p, where each segment is a
1—1

true orbit. LetT" *Px = x/. Then{T'x}; ’_*,i +lp is (3cod)-shadowed by(Tz }’* . Let
tj=ijs—i;—1. Then from lemma 3.8(b),
L; £;

Zd(T’/*’z Th*P¥i ) < Zco/\m'”“ G0 (d(Tz, TH*Px) + d (T 1z, Thm1x))
i=0 i=0

0
J o ) 126'2(3
< AMINGL=DEe0s < 20, 3.2
Z:Co cod < T~ (3.2)
Let
1k,-+p—l '
®= sup = > f(I'v). (3.3)

1< j<o0 P i=k;
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Then:
1 r-1 , p—-1 ) )
® < sup —[Z F(T™" x) +LZd(ka+’x, T’"+’x)i|
1<j<o0 P i=0 i=0
1 p—1 -1
<2 Famin + = Z KPS,
p i=0
1222 A LS
< =) f@"x)+ ————, (3.4)
p ,zzo: (K—Dp

where the second step follows by the definitiorkgfi.e.d(T*x, T™x) < §/K”.
For eachi, there exists a non-negative integgr such thate, = 7"*%7x. To bound®
from below, observe that

gy kjtp—1 '
() = ngnwpw”[Zf(xw; > f(T'x)}

i=k;j

< —=— liminf N +anp® |
< o niimin [;f(x,) qnp }

or in other words,
minf —— = 1[2 f@) = N{f) @) +qnp(© — <f><x>)] >0

Define the frequency for those segments that are thrown out®as =
liminf y_oo gy p/(gnp + N +1). Then® > pu,(B(T"x,8/K?)) > 0, whereB(T"x, §/K?)
denotes thé/ K ”-neighbourhood of " x. It follows that

I|m|nf—|:2f(x)— (x)+q/vp(®—<f>(3€))] >0

N—o00

Thus

1 N
- > —liminf —— y—N
() > —limin W[IEZO f e <f>(x)}

N—oo 4NP

_ 1 o
= lim sup—[N(f)(x) — NSy@)+ Y (f(T'2) — f(x,-’))]
i=0

12Lc§8
|IZ\rI1_)SOl<J)pT[(f (x) = Sn(2)] - 1-np

—12Lc38
> .
1-1p
Combining equations (3.4) and (3.5) yields
L8 frmig > 0 - By - LR LD
- X) > _— xX) — _ .
P 0 (K—-Dp 1-MNp (K-Dp

Redefine] properly to complete the proof. O

WV

from (3.2)

(3.5)

Proof of proposition 3.1. Statementd) follows immediately from lemma 3.8]. Thus we
only need to prove statemet)( Let y be a periodic point such th@t’y = y and{T'x} comes
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within § of the {T?y}. Then there existg: > 0 such that/(T"*x, T'y) < 8, for0< i < p.
Notice that
d(T™Px, T"x) < d(T"™Px,y) +d(T"x, y) < (K + 1)8.
From lemma 3.8(b), we get
d(T™"x, T'y) < 2co(K + 1AmMnGr=1-ig,
Thus
AcoL(K + )8
p(1—2)

From lemma 3.10, we havgf)(x) — Yr"7"1 £(Tix)/p < ¢, (K +1)§/p. Therefore,

i=m

(K + 15 | 4oL (K +1)
(N = (NHB) < T

Definecy = ¢y (K + 1) + 4coL(K + 1)/(1 — A) to complete the proof of statement (b).

1"&t Lt o
’; Z f(T'x)—(f)(y)‘ < ;Zd(Tmﬂx,T'y)g
i=0

i=m

4. Stability of optimal orbits

In this section, we continue our discussion of optimal orbits in the case where our standing
hypothesis in the previous section is satisfied. Our emphasis is on the stability of optimal orbits
under small perturbations df, i.e., whether these orbits remain optimal wheis slightly
perturbed. To simplify the exposition, we consider perturbations in the space of Lipschitz
functions, but we point out how the results here can be extended to the spatéuottions

as well.

In [14], Hunt and Yorke consider the local extrema of non-differentiable curves given by
the basin boundaries of a class®fcylinder maps. They find that for an open set of maps, the
local extrema occur at eventually periodic points, while if there is a non-periodic extremum,
then there exist arbitrarily smadl® perturbations of the map that destroy its extremality. In
this section, we prove similar results for optimal orbits.

The topology of the space of Lipschitz functions is given by the norm

[f(x)— f)
b = IO S0 gl
x#£y

For optimal periodic orbits, we make the following observation.

Proposition 4.1. For every periodic orbit{T?y} there exists an open s&t of Lipschitz
continuous functions such that for evefye G, {T'y} is optimal. Moreover, it is the unique
measure-recurrent optimal orbit.

Proof. We begin by constructing. Let p be the period of. Lety be the smallest separation
of any two points in they-orbit, i.e.,y = ming<;-;-,{|T'y — T’/y|}. Define fo(x) =
1—d(x, O(y)), whereO(y) represents the-orbit andd (x, O(y)) = Minog;~, d(x, T'y).
Then f, is a Lipschitz function and 1 is its Lipschitz constant. Clegtyy} is optimal
for fo and (fo)(y) = 1. Lete > 0 be a small number to be determined later. Define
G={fo+g: gl <e}. ,

Now we prove, by contradiction, thatéfis sufficiently small, thed 7'y} is the unique
measure-recurrent optimal orbit. From proposition 2.2, for edcke G, there exists
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{T'x} c [0, 1] that is optimal and measure recurrent. Suppose the {Fhit} is different
(as a set) fromT'y}.

Let K > 1 be large enough thatDT| < K. Notice that axiom A and uniformly
expanding systems aexpansivg13, section 6.4], i.e., there exisés > 0 (which is called
an expansivity constapisuch that for any two points), z € M, if d(T"w, T"z) < o for
all n € N, then lim,_ . d(T"w,T"z) = 0. Leto be an expansivity constant. Define
T = min(o, y/(3K)). The set of pointg with d(z, O(y)) > t has positive measure with
respect to the measure generated by. This observation will be used later.

The trajectony{T?x} can be divided into infinitely many segments such that each segment
{T™x, ..., T"*"x} belongsto one of the following classes:{i}= p—1 andthere exists > 0
such thad (T"*x, T**y) < t for 0 < i < n; and (i)n = 0 andd(T"x, O(y)) > t/K”.
Though this procedure can be performed in more than one way, for any fixed choice, the set
of segment$7" x} in class (ii) is not empty. Further, if(T"x, O(y)) > 1, then{T"x} must
be a segment in class (ii). Indeed, as one follows the traje¢id >, the segments in class
(ii) are chosen with a positive frequency, where, as in the previous section, the frequency is
defined by liminfy_ .. (N + 1)1 (#{class (ii) segments it ix}Y o 1.

In class (i), fore > 0 sufficiently smalland =0, 1, ..., p — 1, each functionfy + g in
G achieves a local maximum &'y, and(fo + g)(T""x) < (fo + g)(T"*y). Therefore

p—1
D (fo+ (T x) = p(fo+g)(y) <O. (4.2)
i=0
In class (ii),
(fo+ )(T™x) = (fo+8)(¥) = (fo(T™x) — 1) + (g(T"x) — (g)(»))
< —d(T"x, 0() + (g(T"x) — Min g(y)) < —— + 2. (4.2)
0<i<p Kr

If € < t/(4K?), then(fo+g)(T™"x) < (fo +g)(y) — t/(2K?). Since the segments in
class (ii) are chosen with a positive frequency we have

(fo+rg)(x) < (fot+g)(),
a contradiction. O

Remark 4.2. For C* functions, we have a result similar to proposition 4.1, using fema

function that equald — [d(x, O(y))]? near O(y). Then of course (4.2) must be modified
accordingly, and furthermore the right side of (4.1) must be changed because the points on
O(y) need not be local extrema fgg + g. In fact, we must use lemma 3.8(b) to show that

for every block of consecutive class (i) segments, the sum of the expressions on the left side of
(4.1) is bounded above by a constant (independeatasfd the length of the block) times

Then we use the fact that every such block is followed by at least one class (ii) segment. We
leave the remaining details to the reader.

Remark 4.3. Propositions 3.1 and 4.1 can be proved in a different way, using a type of result
that was first introduced by M [5] and later generalized in [8,12]. We state the result here

as proposition 4.4 without further comment. Interested readers may refer to these references
for details.

Proposition 4.4. Let{Tx}?°, be a measure-recurrent optimal orbit fgr. Then there exists
a Lipschitz functiorg, : w(x) — R such thatf(z) < (f)(x) + g«(Tz) — g.(z), for each
z € M; and this inequality becomes an equality foe w(x).
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Remark 4.5. By using a similar argument to our proof of proposition 4.1, we can show that,
given a Lipschitz functiorf, if {T'y} is an optimal periodic orbit forf, then we can perturb

f to a nearby functiory such tha{7"y} is optimal for an open set of functions that contains
f. In other words, the set of functions for whig#t y} is optimal is the closure of an open set.

In contrast, for optimal non-periodic orbits, we have the following theorem.

Theorem 4.6.Let {T'x}?°, be a measure-recurrent optimal non-periodic orbit f6r Then
there exist arbitrarily small perturbations (within the space of Lipschitz functiong)wider
which{T"x}%°, loses optimality.

Remark 4.7. Theorem 4.6 implies that optimal non-periodic orbits may lose optimality under
small perturbations off, whereas proposition 4.1 says that the set of functions for which a
given periodic orbit is optimal contains an open subset of the Lipschitz functions. In this sense,
optimal periodic orbits are more robust than non-periodic ones. This supports conjecture 1.1
in the introduction.

In the remainder of this section our main goal is to prove theorem 4.6. In developing
the proof, we first need some notation. LEF'x} be a measure-recurrent optimal
non-periodic orbit. Given a pair of non-negative integersand p, we sayS,, , =
{T™x, T"*x, ..., T™P~1x} is arecursive segmeiitt §,, , := d(T™*Px, T™x) is smaller than
vm,p,» Which is the smallest distance between any two points in this segment. Chpose
€o andi and assums,, ,, is sufficiently small so that lemmas 3.7 and 3.8 and proposition 3.1
hold and thatcos,,,, < o/2, whereo is the expansivity constant defined in the proof of
proposition 4.1. Then by proposition 3.1(&),,, can be(cos., ,)-shadowed by a unique
periodp orbit {y, p» TVm.p»--->» TP 1y ,}. LetK > 1 andL > 0 be such thaf DT || < K
and| fllLip < L. _

Now we construct the perturbations that will destroy the optimality7ok}. Lety,, , be
defined as above. Define

fm,p(Z) = —d(Z, O(ym,p))‘ (43)

Notice thatl|fm,,,||L,~p < D+1,whereD is the diameter oM. We will prove that giver > 0,
{Tx} is not optimal forf + efm,,, for properly choserfm,p.

Remark 4.8. If we consider onlyC* perturbations, then the corners @f, , must be rounded,
but we can do so with perturbations that are arbitrarily small in tffenorm and do not change
its C* norm. Thus, once we show thdti x} is not optimal for f + ef,,,,,,, the same will be
true for C* approximations offm,,, that are sufficiently close in the® norm.

Consider the following two classes (whose intersection may be non-empty) of measure-
recurrent optimal non-periodic orbits.

Class I. For allg > 0, there exists a recursive segm8pt, such thaty,, ,/8,., > Q.

Class Il. The trajectory7’x} cannot be exponentially approximated by periodic orbits,
i.e., for eachw > 0, there existsV > 0 such tha#$,, , > exp(—ap), for 0 < m < oo and
p=N.

Notice that if w(x) contains a periodic orbit with periog, thens,, ., can be made
arbitrarily small for eaclw = 1,2, 3, ..., and thugT?x} is not in class II.

The following observation implies that this classification is complete (though possibly
overlapping). We remark that the only dynamical assumption used in the proof of this
proposition is tha > max{||DT||, 1}.

Proposition 4.9. If {T?x} is notin class |, then it is in class II.
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Proof. Supposg7'x} is neither in class I nor in class Il. Then there exigts> 0, such that
Ym,p/8m.p < Q fOr every recursive segmesi, ,. Also, there existe > 0 and arbitrarily long
recursive segments,, , such thai,, , < exp(—ap). We now prove that this will lead to a
contradiction.

Let S, 5, be @ recursive segment widh, ,, < exp(—apo). Since{T'x}is notin class |,
there exists a recursive segmept ,, contained inS,,,, p, (With m;+1 + p;+1 < m; + p;) such
thats,,, ,, < Qdu, po- Repeat this procedure, starting with, ,, at each time, until we finally
get a segment that contains only two elements, where the length cannot be further reduced.
Thus, we have constructed a sequence of recursive segififanis}’_, with the properties
that

8m,+1,pi+1 < Q8171;,p,'7 (44)
and the last recursive segmesy, , in this sequence contains exactly two elements, i.e.
pn = 2. Let

= inf Tix, T'x). 4.
’ 0<i7jIDZInQ/ad( % T'x) (4.5)

Notice that by a similar construction as above, starting with a recursive segment of length at
most 2InQ/a and distance at most2there existg such thaw/(T*x, T1x) < 2r Q2" 2/,
and therefore > 0.

We first show thatp; — p;+1, the length that is reduced in thith step of the previous
procedure, is large whefy,, ,, is small.

d(Tmi+1+Pix’ Tmi+1+Pi+1x) < d(T"li+1+p'x, Tm,-+1x) + d(Tm,-+1+p,-+1x’ T’”“lx)
L KM (TP T™ x) + d (T Pisiy, T™Miviyx)
= K" 8m,~,p,~ + 8’111+17pi+1
< (mel*mi + Q)(Smhpi’ (46)
where the last step follows from (4.4).
Sincem; + pi > Mmi+1 + pi+1, WE haven;+1 —m; < Di — Di+1- Thus (46) gives
d(T"*Pix, TPy < (KPPt Q)8 (4.7)
Lets* = (K?'"%/~+ 0)~1r > 0, wherer is defined in equation (4.5). Then (4.7) implies
for §,,,,, < 8%, we have
pi — piv1 > 2InQ/a. (4.8)
By hypothesiss,,,. ,, can be chosen withg arbitrarily large. Choosgg to be sufficiently
large such thad,,, ,, < (§*)?. Define

In(8* /8,
n* = ING" /. o) , (4.9)
InQ
where [- ] denotes taking the integer part. FokOi < n*, we have
. IN(* /8mg, pg)
Smipr < Q' Omopo < @ "o

Thus (4.8) impliep; — pi+1 > 2In Q/a. Hence,
2InQ <In8* - Insmo,,,()) 2InQ
> .

o

“Bmg, po = 6.

*

Po> Y (pi = pist) > (0" +1) -

i=0 InQ o
2 Iné,,
= — =(IN8pg po — INS*) > ——222, (4.10)
o o
Inequality (4.10) yields,,, », > exp(—apo), a contradiction. ]

Theorem 4.6 then follows from the following two lemmas.
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Lemma 4.10.1f {T'x} is in class I, then for every > 0, there exists a periodic point,, ,
suchthat(f +e€ f,, ,) (x) < (f +€ fu.p)(Ym.») (Wherey,, , and £,, , are defined earlier in this
section, after recursive segments). In particu{d¥ x} is non-optimal forf + efm,p.

Lemma 4.11. The conclusion of lemma 4.10 also hold§Tifx} is in class Il.

Proof of lemma 4.10.If there exists a periodic orbit i (x), then by applying corollary 3.2
and proposition 4.1, we are done. Thus, we need only to consider the case where there are no
periodic orbits inw(x).

Since {T'x} is in class |, for givenp > 8co, we can choose a recursive segment
Sp.p = {Tix}T;nf_l such thaty,, ,/8m., = p. Further,we can choosk, , small enough
that S,, , is (codm,,)-shadowed by the periogd-orbit {T"ym,p}fz_ol. Lety = yu,. Notice
that the smallest separation between any two point®(n) is bounded from below by
Ym,p — 2€08m,p > 3ym,p/4. SinceM is compact, by making sufficiently large, we can
makey,, , < o for all m, whereo is an expansivity constant as defined in the proof of
proposition 4.1. Let

So =inf d(T'x, T’y) > 0. (4.11)
L]

Fixing y (and hencep), we now change our selection 8, ,, if necessary, so tha, , <
2K " 8o. To avoid confusion, we us/, andy,,% to denote the corresponding terms for the
initially selecteds,, ,. We haves,, , < 83{3 and

3 old old

Y
Ym,p = =P _ 2COSm.p > %»
hencey,. ,/8m., = va'%/(2854) = p/2. Therefore, the recursive segmeshit, selected in

this way can have arbitrarily large ratjg, , /8, p.
From proposition 3.1(b),

C0C18m.p

(FYOmp) > (/I x) — (4.12)

Using a technique similar to the proof of proposition 4.1, we diiflex} into infinitely
many segments such that each segn@ik, ..., T¥**x} has the following properties: (a)
there existsj > 0 such thatd(T**'x, T/*'y) < y, ,/(8K), for 0 < i < ¢; and (b)
d(T*x, 0()) > ¥m,p/(8K). (Some segments will have= 0.) To see tha{T'x} can be
divided in this way, we notice that, , < o. Hence ifd(T*x, T/y) < y,.,,/(8K), then there
exists a smallegtsuch that!(T***x, T/**y) > y,, ,/(8K). Sinced (T***x, T/**y) < Y. ,/8,
and the smallest separation between any two poir®in is bounded from below byy3, , /4,
we have

d(T*"x, O(y)) = d(T*x, T"*'y) > ..,/ (8K).
From lemma 3.8(b),
d(THx, THy) < ™20y, 0 for 0<i <. (4.13)
From (4.13) 8o < cor 12y, ,, whered, is defined in equation (4.11), so

< 2|n(COVm,p/50) +

<has (4.14)
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Recall the definition (4.3) of;, ,. Sinces,, , < 2K 5,

~ 1 ¢ ~ k+i 1 £ k+i 1 ym,p
np)Omp) = 757 ;fm,p(T N = ;d(T 500N > 11 B
In(1/2) Yo
= 2In(coYm. p/80) + 3In(L/A) 8K
> Ind/%) Yop, (4.15)
2IN(2coK Py, p/8m,p) +3IN(1/2) 8K
Since (4.15) is true for every segméfitx, ..., T x},
> ~ In(1/4) Ym,p
m m - m 2 . . . 416
o p) Oimp) = L p) () 2 3 20V p/Om ) + 20 INK +3In(1/%) 8K (4.16)
Givene > 0, for sufficiently largey,,, , /8., ,, we have
Vm,p 8coc1K[2 |n(2c0ym,p/8,n,p) +2pIn K +3In(1/A)]
> .
S p epIn(1/x)
Therefore,
€oC10m,p eln(1/x) Ymp (4.17)

P 2IN(2coymp/0mp) +2pINK +3IN(1/A) 8K

Combining (4.16) and (4.17), together with (4.12), yielgg + efm,,,)(x) < (f +
6fm,p)(ym,p)- O

Remark 4.12. Using more involved arguments, we can prove {fBfx} in class | that for
all € > 0, there existy,, , and £, , such that(f + € f,, ,)(2) < (f + € fu.p)Vm.p), Tor all
measure-recurrent orbité7z} that are different fror{7"y,, ,}; s0, {T"y,.,} is an optimal
periodic orbit for f + € f,,. -

Though we believe that there exist orbits in class Il, it is not clear to us that there are any
orbits not in class I. If all orbits are in class I, then remarks 4.5 and 4.12 imply that the set
of functions with optimal periodic orbits contains an open and dense subset of the Lipschitz
functions. By remarks 4.2 and 4.8, the same would then be true for the spatéusictions.

Thus, we claim that conjecture 1.1 follows from the following conjecture.

Conjecture 4.13. For axiom A or uniformly expanding, all orbits of T are in class I.
The following lemma will be used in the proof of lemma 4.11.

Lemma 4.14. There existsVg > 0, such that for any recursive segmesijt , with p > 2Ny,
the following properties hold.

(a) d(Tiym,pa Tijﬁp) P (Sm,p/za for NO <i< J < p— NO-

(b) For every segment{7/*x}i_, that stays in thes, ,/(4K)-neighbourhood of
(TNoy, TNo*1  TP=Nyl  there existsk betweenNy and p — Ny such that
d(T™x, T*y) < §,,,/(4K) for 0 < i < s. (Recall thatk is an upper bound on
IDTl.)

Proof. Let us first prove partd). Since S, , is a recursive segment, we have
d(T™x, T™x) > 8, , for0<i < j < p. Lemma 3.8(a) implies

d(T"™x, Ty, ) < coA™r=g, for 0<i<p.
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Let No = [In(4co)/In(1/A)] + 1, where [] denotes the integer part of a number. Then
for No < i < p — No, we haved(T"™"x, T'y, ,) < coA"8y., < 8up/4. Thus, if
N0<i<j§p—No,then
d(T" Ymps TV ym.p) = d(T"" 5, T" x) = d(T" yn,p, T""' x)
. ‘ Sm
—d(T! yp.p, T™ x) > T”

Next we prove partk). Notice that there exists a uniqiebetweenNy and p — Ny
such thatd(T/x, T*y) < 8, ,/(4K). It follows thatd(T/*'x, T**'y) < §,, ,/4. From
@), d(T7*x, T*Yy) = minyy<i<p-n, d(T/*1x, T'y). Therefore from our assumption,
d(T’*x, T"*1y) < §,.,/(4K). By repeating the previous procedure, we prove that
d(T*x, T*y) < 8, ,/(4K),for0<i <s. O

Proof of lemma 4.11.Suppose there exists> 0 such that for everg,, ,, (f + ef,,,,,,)(x) >
(f + efm,p)(ym,,,) . We will prove tha{T'x}%°, is not in class I, i.e., it can be exponentially
approximated by periodic orbits, a contradiction.

Let i, be the measure generatedhyThen

Fines) Omep) — Fonp) () = f d(z. OCym )i (). (4.18)
From proposition 3.1(b),

Sum
()Y Omp) = () () > —2Eomr (4.19)
SiNce(f + € fup) m.p) < (f +€fm p)(x), (4.18) and (4.19) yield
/ d(z. O )i (de) < L2mp (4.20)

Assumee < coc1K; if not, replacee by a smaller value. Les,, ,, be a recursive
segment such thaty > 10Qcoc1 K No/€, whereNg is as in lemma 4.144,,, ,, < 4K e,
where ¢g is as in lemma 3.8, and,,, > 68, forall p < poandm > 0. Let
n = [epo/(100coc1 K No)] > 1, where [] again denotes the integer part of a number. Notice
that 121Ny < po andn > epo/(200coc1 K No). We divide {T'x} into segments of length
12n Ny such that each segment has one and only one of the following propeali@sgntains
only points in thes,,, ,,/(4K)-neighbourhood o®(y,,,, ,,)—we say such a segment is an
inner segment;k) it contains at least one point that is not in #g_,,/(4K)-neighbourhood
of O(yme,p,) — We say such a segment is an outer segment. yLet y,,, ,,, andA =
(TP=Notly ‘Tp=Not2y '~ TPy = y Ty, T?y,...,T% 1y}. We claim that there cannot
exist two points in the same inner segment that are both i8,thg, /(4K )-neighbourhood of
the same point im\; otherwise there exists a segment, with 8, , < 8mg. po/ (2K) < S, po
andp < 121Ny < po, which is a contradiction. Thus, in each inner segment there are
at most Vo points in thes,, ,,/(4K)-neighbourhood ofA. After removing 2Vp points
from a segment of length 4V > 4n(2Ny + 1), a continuous segment of length at least 4
must remain. Therefore, each inner segment contains a subse{jm'ém}figl that stays
in the 8,,, p,/ (4K )-neighbourhood 0O (y) \ A. Lemma 4.14 implies that this subsegment
8o, po/ (4K )-shadows a segment 6f(y). From lemma 3.8(b),

d(T7 %, Oy o) < 2coA™MNGAn=1=Dg . for 0<i<4n. (4.21)
In particular, ifn < i < 3n, then (4.21) implies
AT %, Oy po)) < 200N g py < 2corF0/P0ForkNog (4.22)
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Leta = €In(1/1)/(800Qgc1K N3). Then from (4.22) we have
AT, Oy o)) < 2coe40Norog, (4.23)

Thus, each inner segment contains at leagidnts that lie within 29 exp(—400 No )8, po
Of O(YVimg, po)-

We claim that there exists such thatl, := (Tix}io5°” contains at least
10Qcoc1 K Np/e inner segments, and thus contains at leastcg@Q®& nNp/e points in the
2cq exp(—40c No po)din,, p,-Neighbourhood 0Oy, »,). To prove this claim, we first observe
that from (4.20) there exists such that

1 k+30No po ) COC18m
d(T'x, OYmg.po)) < ———2F0
30Nopo i:zk;-l mopo €P0

The average of (T x, O(ym,,p,)) OVer each outer segment is larger thap ,,/ (48K nNo) >
2¢0C18mq, po/ (€po) (recall thatr = [epo/(10Qcoc1 K No)]). Thus, at least half of the total points
in I, are contained in either an inner segment or a partial segment at the beginning or end of
I,. We conclude that there must be at leasWdpy/(12nNo) — 2 > 125c9c1 K No/e — 2 >
10Qcoc1 K Np/€ inner segments.

Since 200pc1KnNg/e > po, there are at least two pointg”:x and T"+*Ptx with
p1 < 30Ngpo, within 2co exp(—40x Nopo) 8., », O the same point it (y.,,, »,); hence their
distance is less tharcge 4% Norog, - We can chooseg as large as we want; assume then
that 4oe 1®Mro < 1. Moreover, we can choos®,, ,, to be a recursive segment. Then
By, py < € SFNOPOS, by < €714, gy

Repeat the previous arguments to construct a sequence of recursive segmeni¥,,
for which 6,,, ,, < € P8y, , p,, < EXP(—a Zj.:l Pj)8mo,pe- IN particular,s,,, ,, — 0 as
i — oo. By our assumption thgtT'’x} is in class Il,w(x) contains no periodic orbits, and
thus we must have lim, ,, p; = co. On the other hand, we can choaeses (0, «) such that
Sy < €8, .0 < €7%Pi which contradicts the assumption th@tx} isin class Il. O

5. Summary

We have discussed some basic properties of optimal orbits (in the sense of definition 2.1).
Assuming that the dynamical system is given by either an axiom A diffeomorphism or
a uniformly expanding non-invertible map, our main questions are the plausibility of
conjecture 1.1, which was inspired by numerical results and heuristic arguments [1, 2], and
question 1.2.

In recent years, the idea that periodic orbits act as the skeleton (see [15], for example) of
dynamical systems has become popular, and people have been using such ideas in computing
certain average quantities (such as entropy and Lyapunov exponents) in dynamical systems.
The investigation of periodic orbits as optimal orbits should offer new insights into the important
role of periodic orbits in dynamical systems. In this paper, we try to study this problem from
a mathematical point of view.

Our main discussion about conjecture 1.1 is presented in section 4F,Lle¢ the set
of Lipschitz functionsf such thatO(x) is optimal. In proposition 4.1, we prove that if
x is periodic, thenF, contains an open subset; on the other hand, gfenerates a non-
periodic invariant measure, then theorem 4.6 implies fhatontains no open subset. Let
Fper = U{Fx : x is periodig. Notice that conjecture 1.1 can be equivalently restated as
follows: for a givenT', ., contains an open and dense subset. In proposition 4.1, we prove
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that 7., contains an open subset. Furthermore, in theorem 4.6, we prove that each non-
periodic optimal orbit loses optimality under certain small perturbationg.oRemarks 4.2

and 4.8 show how to apply these results to the spac® dfinctions. Hence, to complete the
proof of conjecture 1.1, it remains to be proved (based on remark 4.5) that the perturbations
constructed in the proof of theorem 4.6, or some other small perturbations, make a periodic
orbit optimal. As we stated in remark 4.12, the proof of lemma 4.10 can be extended to prove
for class | orbits that the previous statement is true.

Although we divide orbits into two classes, these classes may overlap, and indeed class |
may contain all orbits. Though we believe that it is possible, with some effort, to construct for
the mapx — 2x(mod 1) an orbit that is in class Il, consideration of this map, which can be
done entirely through symbolic dynamics, makes us doubt that an orbit outside class | exists.
This leads us to formulate conjecture 4.13, which we think is an interesting question in its own
right, especially in the case of— 2x(mod 1), where it can be formulated as a combinatorial
problem on symbol sequences. A positive answer to this conjecture for any class of hyperbolic
maps would allow us to complete the proof of conjecture 1.1 for that class. We emphasize
though, that we believe conjecture 1.1 holds regardless of whether conjecture 4.13 does.

We gave a preliminary answer to question 1.2 in corollary 3.4, in the sense that we
gave a bound on the rate at which the maximum average of a given performance function
f over periodic orbits up to a given period converges to the optimal average as
increases. Specifically, we showed that/jfis the difference between these two averages,
thend, < Cp~Y/™, wherem is the dimension of the ambient manifold. As we suggested in
remark 3.5, the bound could probably be improved significantly by getting a better idea of
the ‘worst case’ metric recurrence properties of an arbitrary traje¢ny}, in the following
sense. Define, as in remark 3, to be the closest recurrence in the trajectory within
iterations; thenl, < Ce,. How quickly muste, approach 0 ap increases? Again, we think
this is an interesting question in its own right, and what the ‘worst case’ trajectory is from this
point of view seems very unclear even for— 2x(mod 1); again for this map the problem
can be considered combinatorially in terms of symbol sequences.
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