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Abstract. Given a dynamical system and a functionf from the state space to the real numbers, an
optimal orbit forf is an orbit over which the time average off is maximal. In this paper we consider
some basic mathematical properties of optimal orbits: existence, sensitivity to perturbations off ,
and approximability by periodic orbits with low period. For hyperbolic systems, we conjecture that
for (topologically) generic smooth functions, there exists an optimal periodic orbit. In support of
this conjecture, we prove that optimal periodic orbits are insensitive to smallC1 perturbations off ,
while the optimality of a non-periodic orbit can be destroyed by arbitrarily smallC1 perturbations.
In case there is no optimal periodic orbit for a givenf , we discuss the question of how fast the
maximum average over orbits of period at mostp must converge to the optimal average, asp

increases.

AMS classification scheme numbers: 58F11, 58F15, 05A99

1. Introduction

Recently, the following optimization problem [1,2] has been posed: which orbit(s) on a given
attractor yield the largest time average of a given smooth functionf ? One motivation for this
question is as follows. A popular method of ‘controlling chaos’ [3, 4] involves using small
perturbations to stabilize the system near an unstable periodic orbit that is embedded in the
chaotic attractor. A typical chaotic attractor contains infinitely many periodic orbits. Which
one should be used in a given application? Here is a natural way to select among them. Letf

be a smooth (C1) function from the phase space toR that measures the ‘performance’ of the
output of the system at a given time. Then, choose an orbit (which may not be unique) that
maximizes the time average off , i.e. an orbit that has the best average performance. If such
an orbit exists, we call it an optimal orbit. More generally we can consider optimization over
all orbits within the attractor. Is the optimum average realized by an unstable periodic orbit?
If so, will this orbit have low or high period?

An important feature of chaotic systems is ergodicity. It is often assumed, though rarely
proved, that a chaotic attractor has anatural measure, i.e., for typical initial conditions (in
the sense that the exceptional subset of the basin of attraction has Lebesgue measure zero),
the invariant measures generated by their trajectories are the same. Nonetheless, there will be
many other orbits that generate different invariant measures. The invariant measure generated
by an optimal orbit will not be the natural measure, except in very special cases (see section 3).
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Hunt and Ott [1, 2] investigate numerically some one- and two-dimensional maps and
several one-parameter families of performance functions. Considering unstable periodic orbits
up to period 24, they observe that in most cases (with respect to Lebesgue measure on the
parameter space), the average is optimized by an orbit with low period. Furthermore, they
argue that although there are cases in which it seems that for a set of parameters with Lebesgue
measure zero, no optimal periodic orbits can be found, the corresponding optimal non-periodic
orbits are special in the sense that their limit sets have zero topological entropy and zero fractal
dimension (in particular, they are not dense in the attractor). They conjecture [1, 2] that,
typically, there exists an optimal periodic orbit for almost every parameter value with respect
to Lebesque measure. We formulate a similar but more precise conjecture below, replacing its
measure-theoretic aspect with the notion of topological genericity, which calls a setgenericif
it contains a countable intersection of open dense sets.

The purpose of this paper is to mathematically establish some fundamental properties
of optimal orbits: existence, sensitivity to parameter perturbations, and approximability by
periodic orbits with low period. We consider only discrete-time systems (maps), and we first
prove existence assuming only continuity of the map and the performance function. Thereafter,
we assume that these functions are smooth and that the dynamics are hyperbolic, in the sense
that the map either is a diffeomorphism satisfying axiom A or is noninvertible and uniformly
expanding. In sections 3 and 4 we prove some results related to the following conjecture.

Conjecture 1.1. For an axiom A or uniformly expanding systemT and a (topologically)
generic smooth functionf , there exists an optimal periodic orbit.

In applications it is also of considerable interest to know how close one can come to
the optimal average by considering only periodic orbits with low period. We formulate this
question in terms of how fast, in the worst case, the maximum average over orbits of period at
mostp must converge to the optimal average, asp→∞.

Question 1.2.For an axiom A or uniformly expanding systemT and a smooth functionf , let
dp be the difference between the optimal average off and its maximum average over periodic
orbits with period at mostp. How fast can one prove thatdp → 0 asp→∞?

In corollary 3.4 we show thatdp must decay faster than a power ofp, but in all of the
examples we have been able to analyze, the decay is much faster.

During the course of preparing this paper, we learned that similar problems have been
studied in different contexts. In particular, in his study of Lagrangian flows, Mañé [5] proves
that for a generic LagrangianL, there is a unique invariant probability measure that minimizes
the average ofL. In that paper, he also poses the following question: is it true that for a generic
LagrangianL, this minimizing measure is supported on a periodic orbit? (See also [6, 7]
for further results on minimizing measures for Lagrangian systems.) Bousch [8] considers
the optimal averages of cos(2π(x − θ)), whereθ is a parameter, over orbits of the doubling
mapx 7→ 2x (mod 1). He shows that for allθ , there is a unique optimal invariant measure,
whose support is contained in a semicircle. (It follows that the support must have Hausdorff
dimension zero [9].) Further, he shows that for almost everyθ (with respect to Lebesgue
measure), the optimizing invariant measure is supported on a periodic orbit. (These results
were conjectured by Jenkinson [10, 11], and the latter result was conjectured independently
by Hunt and Ott [1,2].) More generally, Contreraset al [12] considerC1 expanding maps of
the circle and the class ofCα performance functionsf , where 0< α < 1. They prove that
for (topologically) genericf , there is a unique maximizing measure. Furthermore, within the
subset ofCα functions consisting of the closure of the union ofCβ functions for allβ > α,
they show that generically (in theCα topology) the maximizing measure is supported on a
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periodic orbit. However, this subset is not dense in the set of allCα functions, so the analogue
of conjecture 1.1 forCα functions is still open.

In section 2 we consider the existence of optimal orbits and invariant measures. We
allow all orbits, even those for which the performance average does not exist, using a ‘limsup’
average in that case. We show for continuous dynamical systems and continuous performance
functions, there must exist an optimal orbit that is measure-recurrent (i.e., contained in the
support of the invariant measure that it generates).

In section 3 we restrict our attention to axiom A and uniformly expanding systems and
Lipschitz performance functions. We show, using the quantitative versions of the standard
shadowing and closing lemmas for hyperbolic systems, that either an optimal periodic orbit
exists, or every optimal orbit has no periodic points in its closure. A modification of this
argument shows that there always exists an optimal orbit supported on a minimal set. We also
show that the optimal average can always be approximated algebraically well by averages over
optimal orbits with increasing periods; this is a partial answer to question 1.2.

In section 4 we address conjecture 1.1 more directly by showing (still focusing on axiom A
and uniformly expanding systems and Lipschitz performance functions) that optimal periodic
orbits are more robust than non-periodic ones, in the following sense. We prove that each
periodic orbit is optimal for some open set of Lipschitz performance functions, but if a non-
periodic, measure-recurrent orbit is optimal for some Lipschitz performance functionf , then
there exist arbitrarily small Lipschitz perturbations off for which that orbit is not optimal.
We also indicate how to extend these results to theC1 topology.

Finally, in section 5 we summarize and further discuss the main results in this paper.

2. Existence

In this section we establish the existence of optimal orbits in a general setting. Though
the discussion here could be simplified by discussing only optimal invariant measures, our
techniques in the following sections require the analysis of specific orbits.

We begin with a precise definition of an optimal orbit.

Definition 2.1. LetM be a compact smooth Riemannian manifold,T : M ←↩ be a continuous
map, andf (x) be a real-valued continuous function onM. Let

SN(x) = 1

N

N∑
k=1

f (T kx),

and let 〈f 〉(x) = limN→∞ SN(x) if the limit exists. If〈f 〉(x0) is defined, and for each
x ∈ M, 〈f 〉(x0) > lim supN→∞ SN(x), then the orbit ofx0 is called anoptimal orbit.

From the mathematical point of view, a fundamental question is: Does an optimal orbit
always exist?

For anyx ∈ M, if the weak limit of 1
N

∑N
k=1 δT kx exists asN →∞, whereδx is the Dirac

measure concentrated atx exists, then we sayx generatesan invariant measure and this limit
measure is the measure that isgeneratedby x. We say a pointx ∈ M and its orbit aremeasure
recurrentif (i) x generates an invariant measure; and (ii)x lies in the support of the measure
generated byx. Theω-limit set of a pointx ∈ M is defined asω(x) = ⋂∞

n=0

⋃∞
k=n{T kx}.

We observe that ifx is measure recurrent, thenω(x) is equal to the support of the measure
generated byx. Now we give an affirmative answer to our question about the existence of
optimal orbits in the following proposition.

Proposition 2.2. Under the hypothesis of definition 2.1, there always exists a measure-
recurrent optimal orbit.
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In the remainder of this section we prove proposition 2.2.

Lemma 2.3. For everyx ∈ M, there exists an invariant measureµx such that
∫
f dµx =

lim supN→∞ SN(x).

Proof. There exists a subsequence{SNi (x)} that converges to lim supN→∞ SN(x). Define
µx,Ni = 1

Ni

∑Ni
k=1 δT kx . Since the space of Borel probability measures is compact in weak

topology, there exists a subsequence of{µx,Ni } that converges weakly to a probability measure
µx . It is easy to check thatµx is invariant. Moreover,

∫
f dµx = lim supN→∞ SN(x). �

Lemma 2.4. There exists an invariant measureν such that∫
f dν > lim sup

N→∞
SN(x), for every x ∈ M.

Proof. Let β = supx lim supN→∞ SN(x), and let {xi} be a sequence for which
lim supN→∞ SN(xi)→ β asi →∞. Letµxi be as in lemma 2.3. There exists a subsequence
of {µxi } that converges weakly to an invariant measureν, whence

∫
f dν = β. �

Proof of proposition 2.2. Of all the invariant measures that satisfy lemma 2.4, there is at least
one ergodic measureµ (by the ergodic decomposition theorem; see e.g. [13, section 4.1]). And
by the Birkhoff ergodic theorem, almost every point with respect toµ generatesµ. Therefore,
we can selectx from the support ofµ. Thenx is a measure-recurrent optimal orbit. �

3. Minimality

Given a chaotic dynamical system, we cannot expect every performance function from a given
class, such asC1, to have an optimal periodic orbit. For example, given any compact invariant
setS that contains no periodic orbits, one can constructf to be zero onS and negative at all
other points. We consider, in this section, the properties that an optimal non-periodic orbit
must have in the case that no optimal periodic orbit exists. For example, is it possible that
such an orbit is dense inM? We show in proposition 3.3 that the answer to this question is
essentially no for axiom A and uniformly expanding systems. In fact, proposition 3.3 implies
that a dense orbit can be optimal only if the average〈f 〉 is the same for all orbits onM.

Let T be a diffeomorphism, and3 be a compact invariant set. We say3 is hyperbolic
if there exist a continuous splittingT3M = E1 ⊕ E2 and positive constantsC, λ and κ
with λ < 1 < κ such that (i)DT (Ei) = Ei, i = 1, 2; (ii) for all v ∈ E1 andn > 0,
|DT −n(v)| 6 Cκ−n|v|; and (iii) for all v ∈ E2 andn > 0, |DT n(v)| 6 Cλn|v|. We say a
pointx ∈ M is non-wanderingif for every neighbourhoodU of x, there existsn > 0 such that
T n(U)

⋂
U 6= ∅. Let� be the set of non-wandering points forT . We sayT satisfiesaxiom A

if � is hyperbolic and periodic orbits are dense in�. Notice that ifx is measure recurrent,
then{T ix}∞i=0 = ω(x) ⊂ �, and thereforeT is hyperbolic on{T ix}∞i=0.

Standard definitions of hyperbolicity do not allowT to be non-invertible. However, it is
well known that certain non-invertible maps (like the 2x mod 1 map) share many properties
with hyperbolic diffeomorphisms. In particular, we find that for our purpose, we can include
with axiom A diffeomorphisms, those non-invertibleC1 maps that areuniformly expanding,
i.e., there existsκ > 1 such that|DT (x)v| > κ|v| for all pointsx and tangent vectorsv. (Notice
that we do not allow piecewise smooth expanding maps like tent maps in this definition.)
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Standing hypothesis.In the rest of this paper we assumeT is either an axiom A diffeomorphism
or non-invertible uniformly expanding map. Also, we require the performance functionf to
be Lipschitz continuous.

For δ > 0, we say an orbit{T ix}∞i=0 comes withinδ of a periodic orbit {y =
T py, T y, . . . , T p−1y} if there existsm > 0 such thatd(T m+ix, T iy) 6 δ (i.e. the distance
between these two points in Riemannian metric) for 06 i < p.

The main technical result in this section is the following proposition.

Proposition 3.1. Let {T ix}∞i=0 be a measure-recurrent optimal orbit forf . Then there exist
c0 andc1 > 0 such that ifδ > 0 is sufficiently small, the following statements hold.

(a) If for somem andp, d(T mx, T m+px) < δ/c0, then there exists a period-p orbit {T iy}p−1
i=0

such thatmax06i<p d(T m+ix, T iy) 6 δ; in other words,{T m+ix}p−1
i=0 is δ-shadowed (see

definition 3.6) by{T iy}p−1
i=0 .

(b) If {T iy}p−1
i=0 is a period-p orbit and{T ix} comes withinδ of {T iy}, then〈f 〉(x)−c1δ/p <

〈f 〉(y) 6 〈f 〉(x).
We prove proposition 3.1 later. Now we present a few consequences of this proposition.

Corollary 3.2. Let {T ix}∞i=0 be a measure-recurrent optimal orbit forf . Then for every
periodic pointy ∈ ω(x), 〈f 〉(y) = 〈f 〉(x).

Proof. Let {T iy} ⊂ ω(x) be a period-p orbit. Then there existsnk → ∞ such that
limk→∞ T nkx = y. It follows that {T ix} comes withinδ of y for all δ > 0, so by
proposition 3.1(b),〈f 〉(y) = 〈f 〉(x). �

A consequence of corollary 3.2 is that if there are no optimal periodic orbits, then every
measure-recurrent optimal orbit has the property that itsω-limit set contains no periodic orbits.
Moreover, using similar reasoning, we can prove the following proposition.

Proposition 3.3. For eachf , there exists a measure-recurrent optimal orbit whose closure is
a minimal invariant set. (By ‘minimal’ we mean that the set has no proper, closed, nonempty
subset that isT -invariant.)

If there are no optimal periodic orbits, or there exists only an optimal periodic orbit
with a high period, are there any periodic orbits with low period that yield an ‘approximately
optimal’ average? When controlling a chaotic system with small perturbations, as discussed in
the introduction, it may only be practical to consider low-period orbits. Though, of course, it
is impossible to be precise in an abstract setting about how close to the optimum performance
function average one can come using only ‘low’-period orbits, we can consider the rate of
convergence to the optimal average as the maximum period increases. This is the point of
question 1.2 in the introduction. In the following corollary of proposition 3.1 we answer this
question, partially, in terms of the ‘worst case’ rate of recurrence of the optimal orbit. In
particular, for an arbitrary trajectory{T ix} and a positive integerp, we defineεp(x) as the
closest recurrence in the trajectory withinp iterations, i.e.,εp(x) = inf {|T ix − T jx| : 0 <
|i − j | 6 p}. (Notice that we consider recurrences between any two points in the trajectory,
not just recurrences to the initial condition.)

Corollary 3.4. Let {T ix}∞i=0 be a measure-recurrent optimal orbit forf . Then there exists
C > 0 such that for allp, there exists a periodic orbit{T iyp} of period at mostp such that
〈f 〉(yp) > 〈f 〉(x) − Cεp(x). Furthermore, we have〈f 〉(yp) > 〈f 〉(x) − Cp−1/m, wherem
is the dimension of the ambient manifoldM.
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Proof. Let εp = εp(x). There exist integersr and s such that 0< s − r 6 p and
d(T rx, T sx) < 2εp. From proposition 3.1(a),{T ix}s−1

i=r can be(2c0εp)-shadowed by a period-
(s − r) orbit {T iyp}. From proposition 3.1(b),

〈f 〉(yp) > 〈f 〉(x)− 2c1c0εp(s − r)−1 > 〈f 〉(x)− 2c1c0εp.

There existsc′ > 0 such that for everyp > 0 and every set ofp points inM, the smallest
separation between any two points is bounded byc′p−1/m. Thus,εp 6 c′p−1/m. The previous
equation yields

〈f 〉(yp) > 〈f 〉(x)− 2c′c1c0p
− 1
m .

LetC = max{2c1c0c
′, 2c1c0} to complete the proof. �

Remark 3.5. In terms of question 1.2, we have shown thatdp 6 Cp−1/m. One may be able
to improve this estimate by not throwing away the term(s − r)−1 above, but we think that the
best opportunity for improvement lies in using the dynamics ofT to improve the geometric
estimateεp 6 c′p−1/m. Indeed, for the non-periodic optimal orbits in the example studied
in [1,2,8,10,11], one can show thatεp decreases exponentially, i.e.,εp 6 c exp(−αp). What
is the ‘worst case’ for the rate of decrease ofεp? We think that this is an interesting but difficult
problem.

In the remainder of this section we prove proposition 3.1, but first we need some
preparations.

Definition 3.6. A sequencēx = {xi}bi=a ⊂ M is called aδ-pseudo-orbitif d(T xi, xi+1) < δ

for all a 6 i < b. We sayx̄ is ε-shadowedby the orbit ofx ∈ M if d(T ix, xi) < ε for all
a 6 i < b.

Lemma 3.7 (Anosov–Bowen shadowing lemma).If3 is a compact hyperbolic invariant set,
then there existc0 > 0 and an open neighbourhoodU ⊃ 3 such that for everyδ > 0, every
δ-pseudo-orbit inU is (c0δ)-shadowable.

Our statement of the shadowing lemma is stronger than the standard version (for example,
see [13, section 18.1]) in that it says that the shadowing distance is bounded by the noise level
δ multiplied by a constantc0. However, this can be easily deduced from the proof of the
shadowing lemma.

The following lemma strengthens the usual version of the Anosov closing lemma.

Lemma 3.8 (see [13], section 6.4).Let3 be a compact hyperbolic invariant set forT . Then
there exist an open neighbourhoodU ⊃ 3, positive numbersc0, ε0, andλ ∈ (0, 1) such that:

(a) if T ix ∈ U , for i = 0, . . . , n andd(T nx, x) < ε0 then there exists a periodic pointy with
T ny = y such that

d(T iy, T ix) < c0λ
min(i,n−i) d(T nx, x);

(b) for every positive integern, x ∈ 3 and y ∈ U such thatd(T ix, T iy) < ε0, for
i = 0, . . . , n,

d(T ix, T iy) < c0λ
min(i,n−i)(d(x, y) + d(T nx, T ny)).

Remark 3.9. If T is non-invertible and uniformly expanding, then both the shadowing and
closing lemmas (in the form of lemmas 3.7 and 3.8) still hold, with the replacement of the
hyperbolic invariant set3 by the whole manifoldM.
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In the remainder of this section, we fix our choices of the constantsc0, ε0 andλ so that
lemmas 3.7 and 3.8 hold.

Lemma 3.10.Let {T ix}∞i=0 be a measure-recurrent optimal orbit forf . Then there exists
c′1 > 0 such that ifδ > 0 is sufficiently small andd(T m+px, T mx) < δ, then∣∣∣∣ 1p

p−1∑
i=0

f (T m+ix)− 〈f 〉(x)
∣∣∣∣ < c′1δ

p
.

Proof. Let L > 0 be a Lipschitz constant forf . From lemma 3.8(a), there exists a periodic
point y ′ ∈ M with T py ′ = y ′ such thatd(T m+ix, T iy ′) < c0λ

min(i,p−i)δ, for 0 6 i 6 p.
Therefore,∣∣∣∣ 1p

p−1∑
i=0

f (T m+ix)− 〈f 〉(y ′)
∣∣∣∣ 6 1

p

p−1∑
i=0

|f (T m+ix)− f (T iy ′)| 6 L

p

p−1∑
i=0

d(T m+ix, T iy ′)

<
L

p

p−1∑
i=0

c0λ
min(i,p−i)δ 6 2c0Lδ

(1− λ)p . (3.1)

Let ĉ1 = 2c0L/(1− λ). Then (3.1) yields

1

p

m+p−1∑
i=m

f (T ix) < 〈f 〉(y ′) +
ĉ1δ

p
6 〈f 〉(x) +

ĉ1δ

p
.

It remains to be shown that there existsc′1 > ĉ1 such that

1

p

m+p−1∑
i=m

f (T ix) > 〈f 〉(x)− c
′
1δ

p
.

We begin by constructing a pseudo-orbit as follows. Assume‖DT ‖ 6 K andK > 1.
Let k1 be the smallest integer such thatd(T k1x, T mx) < δ/Kp. Given kj , let kj+1 be the
smallest integer such thatd(T kj+1x, T mx) < δ/Kp andkj+1 − kj > p. Throw out all the
pieces{T kj x, T kj+1x, . . . , T kj+p−1x} from {T ix}∞i=0. Renumber the remaining sequence, and
write it as{x ′i}∞i=0. Sinced(T m+px, T mx) < δ,

d(T kj+px, T kj x) 6 d(T kj+px, T m+px) + d(T kj x, T mx) + d(T m+px, T mx)

< Kp δ

Kp
+
δ

Kp
+ δ < 3δ.

Thus,{x ′i}∞i=0 is a(3δ)-pseudo-orbit. By lemma 3.7, there existsc0 > 0 (which depends only
onT ) such that this pseudo-orbit is(3c0δ)-shadowed by a true orbit{T iz}∞i=0.

The sequence{x ′i}∞i=0 is made up of segments{T ix}kj+1−1
i=kj+p, where each segment is a

true orbit. LetT kj+px = x ′ij . Then {T ix}kj+1−1
i=kj+p is (3c0δ)-shadowed by{T iz}ij+1−1

i=ij . Let
`j = ij+1− ij − 1. Then from lemma 3.8(b),
`j∑
i=0

d(T ij+iz, T kj+p+ix) 6
`j∑
i=0

c0λ
min(i,`j−i)(d(T ij z, T kj+px) + d(T ij+1−1z, T kj+1−1x))

6
`j∑
i=0

c0λ
min(i,`j−i)6c0δ 6

12c2
0δ

1− λ . (3.2)

Let

2 = sup
16j<∞

1

p

kj+p−1∑
i=kj

f (T ix). (3.3)
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Then:

2 6 sup
16j<∞

1

p

[ p−1∑
i=0

f (T m+ix) +L
p−1∑
i=0

d(T kj+ix, T m+ix)

]

<
1

p

p−1∑
i=0

f (T m+ix) +
L

p

p−1∑
i=0

Ki−pδ,

<
1

p

p−1∑
i=0

f (T m+ix) +
Lδ

(K − 1)p
, (3.4)

where the second step follows by the definition ofkj , i.e.d(T kj x, T mx) < δ/Kp.
For eachi, there exists a non-negative integerqi , such thatx ′i = T i+qipx. To bound2

from below, observe that

〈f 〉(x) = lim
N→∞

1

qNp +N + 1

[ N∑
i=0

f (x ′i ) +
qN∑
j=1

kj+p−1∑
i=kj

f (T ix)

]

6 1

qNp +N + 1
lim inf
N→∞

[ N∑
i=0

f (x ′i ) + qNp2

]
,

or in other words,

lim inf
N→∞

1

qNp +N + 1

[ N∑
i=0

f (x ′i )−N〈f 〉(x) + qNp(2− 〈f 〉(x))
]
> 0.

Define the frequency for those segments that are thrown out as8 =
lim inf N→∞ qNp/(qNp +N + 1). Then8 > µx(B(T mx, δ/Kp)) > 0, whereB(T mx, δ/Kp)

denotes theδ/Kp-neighbourhood ofT mx. It follows that

lim inf
N→∞

1

qNp

[ N∑
i=0

f (x ′i )−N〈f 〉(x) + qNp(2− 〈f 〉(x))
]
> 0.

Thus

2− 〈f 〉(x) > − lim inf
N→∞

1

qNp

[ N∑
i=0

f (x ′i )−N〈f 〉(x)
]

= lim sup
N→∞

1

qNp

[
N〈f 〉(x)−NSN(z) +

N∑
i=0

(f (T iz)− f (x ′i ))
]

> lim sup
N→∞

N

qNp
[〈f 〉(x)− SN(z)] − 12Lc2

0δ

(1− λ)p , from (3.2)

> −12Lc2
0δ

(1− λ)p . (3.5)

Combining equations (3.4) and (3.5) yields

1

p

p−1∑
i=0

f (T m+ix) > 2− Lδ

(K − 1)p
> 〈f 〉(x)− 12Lc2

0δ

(1− λ)p −
Lδ

(K − 1)p
.

Redefinec′1 properly to complete the proof. �

Proof of proposition 3.1. Statement (a) follows immediately from lemma 3.8(a). Thus we
only need to prove statement (b). Lety be a periodic point such thatT py = y and{T ix} comes
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within δ of the{T iy}. Then there existsm > 0 such thatd(T m+ix, T iy) 6 δ, for 06 i < p.
Notice that

d(T m+px, T mx) < d(T m+px, y) + d(T mx, y) 6 (K + 1)δ.

From lemma 3.8(b), we get

d(T m+ix, T iy) 6 2c0(K + 1)λmin(i,p−1−i)δ.

Thus ∣∣∣∣ 1p
m+p−1∑
i=m

f (T ix)− 〈f 〉(y)
∣∣∣∣ 6 L

p

p−1∑
i=0

d(T m+ix, T iy) 6 4c0L(K + 1)δ

p(1− λ) .

From lemma 3.10, we have〈f 〉(x)−∑m+p−1
i=m f (T ix)/p < c′1(K + 1)δ/p. Therefore,

〈f 〉(x)− 〈f 〉(y) < c′1(K + 1)δ

p
+

4c0L(K + 1)δ

p(1− λ) .

Definec1 = c′1(K + 1) + 4c0L(K + 1)/(1− λ) to complete the proof of statement (b).�

4. Stability of optimal orbits

In this section, we continue our discussion of optimal orbits in the case where our standing
hypothesis in the previous section is satisfied. Our emphasis is on the stability of optimal orbits
under small perturbations off , i.e., whether these orbits remain optimal whenf is slightly
perturbed. To simplify the exposition, we consider perturbations in the space of Lipschitz
functions, but we point out how the results here can be extended to the space ofC1 functions
as well.

In [14], Hunt and Yorke consider the local extrema of non-differentiable curves given by
the basin boundaries of a class ofC1 cylinder maps. They find that for an open set of maps, the
local extrema occur at eventually periodic points, while if there is a non-periodic extremum,
then there exist arbitrarily smallC1 perturbations of the map that destroy its extremality. In
this section, we prove similar results for optimal orbits.

The topology of the space of Lipschitz functions is given by the norm

‖f ‖Lip = max
x∈M
|f (x)| + sup

x,y∈M
x 6=y

|f (x)− f (y)|
|d(x, y)| .

For optimal periodic orbits, we make the following observation.

Proposition 4.1. For every periodic orbit{T iy} there exists an open setG of Lipschitz
continuous functions such that for everyf ∈ G, {T iy} is optimal. Moreover, it is the unique
measure-recurrent optimal orbit.

Proof. We begin by constructingG. Letp be the period ofy. Letγ be the smallest separation
of any two points in they-orbit, i.e., γ = min06i<j<p{|T iy − T jy|}. Definef0(x) =
1− d(x,O(y)), whereO(y) represents they-orbit andd(x,O(y)) = min06i<p d(x, T iy).
Then f0 is a Lipschitz function and 1 is its Lipschitz constant. Clearly{T iy} is optimal
for f0 and 〈f0〉(y) = 1. Let ε > 0 be a small number to be determined later. Define
G = {f0 + g : ‖g‖Lip < ε}.

Now we prove, by contradiction, that ifε is sufficiently small, then{T iy} is the unique
measure-recurrent optimal orbit. From proposition 2.2, for eachf ∈ G, there exists
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{T ix} ⊂ [0, 1] that is optimal and measure recurrent. Suppose the orbit{T ix} is different
(as a set) from{T iy}.

Let K > 1 be large enough that‖DT ‖ 6 K. Notice that axiom A and uniformly
expanding systems areexpansive[13, section 6.4], i.e., there existsσ > 0 (which is called
an expansivity constant) such that for any two pointsw, z ∈ M, if d(T nw, T nz) < σ for
all n ∈ N , then limn→∞ d(T nw, T nz) = 0. Let σ be an expansivity constant. Define
τ = min(σ, γ /(3K)). The set of pointsz with d(z,O(y)) > τ has positive measure with
respect to the measureµx generated byx. This observation will be used later.

The trajectory{T ix} can be divided into infinitely many segments such that each segment
{T mx, . . . , T m+nx} belongs to one of the following classes: (i)n = p−1 and there existsk > 0
such thatd(T m+ix, T k+iy) < τ for 0 6 i 6 n; and (ii) n = 0 andd(T mx,O(y)) > τ/Kp.
Though this procedure can be performed in more than one way, for any fixed choice, the set
of segments{T mx} in class (ii) is not empty. Further, ifd(T mx,O(y)) > τ , then{T mx}must
be a segment in class (ii). Indeed, as one follows the trajectory{T ix}∞i=0, the segments in class
(ii) are chosen with a positive frequency, where, as in the previous section, the frequency is
defined by lim infN→∞(N + 1)−1(#{class (ii) segments in{T ix}Ni=0}).

In class (i), forε > 0 sufficiently small andi = 0, 1, . . . , p − 1, each functionf0 + g in
G achieves a local maximum atT m+iy, and(f0 + g)(T m+ix) < (f0 + g)(T m+iy). Therefore

p−1∑
i=0

(f0 + g)(T m+ix)− p〈f0 + g〉(y) < 0. (4.1)

In class (ii),

(f0 + g)(T mx)− 〈f0 + g〉(y) = (f0(T
mx)− 1) + (g(T mx)− 〈g〉(y))

6 − d(T mx,O(y)) + (g(T mx)− min
06i<p

g(y)) 6 − τ

Kp
+ 2ε. (4.2)

If ε < τ/(4Kp), then(f0 + g)(T mx) < 〈f0 + g〉(y) − τ/(2Kp). Since the segments in
class (ii) are chosen with a positive frequency we have

〈f0 + g〉(x) < 〈f0 + g〉(y),
a contradiction. �

Remark 4.2. For C1 functions, we have a result similar to proposition 4.1, using forf0 a
function that equals1 − [d(x,O(y))]2 nearO(y). Then of course (4.2) must be modified
accordingly, and furthermore the right side of (4.1) must be changed because the points on
O(y) need not be local extrema forf0 + g. In fact, we must use lemma 3.8(b) to show that
for every block of consecutive class (i) segments, the sum of the expressions on the left side of
(4.1) is bounded above by a constant (independent ofε and the length of the block) timesε.
Then we use the fact that every such block is followed by at least one class (ii) segment. We
leave the remaining details to the reader.

Remark 4.3. Propositions 3.1 and 4.1 can be proved in a different way, using a type of result
that was first introduced by Mañé [5] and later generalized in [8,12]. We state the result here
as proposition 4.4 without further comment. Interested readers may refer to these references
for details.

Proposition 4.4. Let {T ix}∞i=0 be a measure-recurrent optimal orbit forf . Then there exists
a Lipschitz functiongx : ω(x) → R such thatf (z) 6 〈f 〉(x) + gx(T z) − gx(z), for each
z ∈ M; and this inequality becomes an equality forz ∈ ω(x).
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Remark 4.5. By using a similar argument to our proof of proposition 4.1, we can show that,
given a Lipschitz functionf , if {T iy} is an optimal periodic orbit forf , then we can perturb
f to a nearby functionf̃ such that{T iy} is optimal for an open set of functions that contains
f̃ . In other words, the set of functions for which{T iy} is optimal is the closure of an open set.

In contrast, for optimal non-periodic orbits, we have the following theorem.

Theorem 4.6.Let {T ix}∞i=0 be a measure-recurrent optimal non-periodic orbit forf . Then
there exist arbitrarily small perturbations (within the space of Lipschitz functions) off under
which{T ix}∞i=0 loses optimality.

Remark 4.7. Theorem 4.6 implies that optimal non-periodic orbits may lose optimality under
small perturbations off , whereas proposition 4.1 says that the set of functions for which a
given periodic orbit is optimal contains an open subset of the Lipschitz functions. In this sense,
optimal periodic orbits are more robust than non-periodic ones. This supports conjecture 1.1
in the introduction.

In the remainder of this section our main goal is to prove theorem 4.6. In developing
the proof, we first need some notation. Let{T ix} be a measure-recurrent optimal
non-periodic orbit. Given a pair of non-negative integersm and p, we saySm,p =
{T mx, T m+1x, . . . , T m+p−1x} is arecursive segmentif δm,p := d(T m+px, T mx) is smaller than
γm,p, which is the smallest distance between any two points in this segment. Choosec0, c1,
ε0 andλ and assumeδm,p is sufficiently small so that lemmas 3.7 and 3.8 and proposition 3.1
hold and thatc0δm,p < σ/2, whereσ is the expansivity constant defined in the proof of
proposition 4.1. Then by proposition 3.1(a),Sm,p can be(c0δm,p)-shadowed by a unique
period-p orbit {ym,p, T ym,p, . . . , T p−1ym,p}. LetK > 1 andL > 0 be such that‖DT ‖ 6 K
and‖f ‖Lip 6 L.

Now we construct the perturbations that will destroy the optimality of{T ix}. Letym,p be
defined as above. Define

f̃m,p(z) = −d(z,O(ym,p)). (4.3)

Notice that‖f̃m,p‖Lip 6 D+1, whereD is the diameter ofM. We will prove that givenε > 0,
{T ix} is not optimal forf + εf̃m,p for properly chosenf̃m,p.

Remark 4.8. If we consider onlyC1 perturbations, then the corners of̃fm,p must be rounded,
but we can do so with perturbations that are arbitrarily small in theC0 norm and do not change
its C1 norm. Thus, once we show that{T ix} is not optimal forf + εf̃m,p, the same will be
true forC1 approximations off̃m,p that are sufficiently close in theC0 norm.

Consider the following two classes (whose intersection may be non-empty) of measure-
recurrent optimal non-periodic orbits.

Class I. For allQ > 0, there exists a recursive segmentSm,p such thatγm,p/δm,p > Q.
Class II. The trajectory{T ix} cannot be exponentially approximated by periodic orbits,

i.e., for eachα > 0, there existsN > 0 such thatδm,p > exp(−αp), for 0 6 m < ∞ and
p > N .

Notice that ifω(x) contains a periodic orbit with periodp, then δm,np can be made
arbitrarily small for eachn = 1, 2, 3, . . . , and thus{T ix} is not in class II.

The following observation implies that this classification is complete (though possibly
overlapping). We remark that the only dynamical assumption used in the proof of this
proposition is thatK > max{‖DT ‖, 1}.
Proposition 4.9. If {T ix} is not in class I, then it is in class II.
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Proof. Suppose{T ix} is neither in class I nor in class II. Then there existsQ > 0, such that
γm,p/δm,p 6 Q for every recursive segmentSm,p. Also, there existsα > 0 and arbitrarily long
recursive segmentsSm,p such thatδm,p < exp(−αp). We now prove that this will lead to a
contradiction.

Let Sm0,p0 be a recursive segment withδm0,p0 < exp(−αp0). Since{T ix} is not in class I,
there exists a recursive segmentSm1,p1 contained inSm0,p0 (with mi+1 + pi+1 < mi + pi) such
thatδm1,p1 6 Qδm0,p0. Repeat this procedure, starting withSmi,pi at each time, until we finally
get a segment that contains only two elements, where the length cannot be further reduced.
Thus, we have constructed a sequence of recursive segments{Smi,pi }ni=0 with the properties
that

δmi+1,pi+1 6 Qδmi,pi , (4.4)

and the last recursive segmentSmn,pn in this sequence contains exactly two elements, i.e.
pn = 2. Let

τ = inf
0<i−j<2 lnQ/α

d(T ix, T jx). (4.5)

Notice that by a similar construction as above, starting with a recursive segment of length at
most 2 lnQ/α and distance at most 2τ , there existsk such thatd(T kx, T k+1x) 6 2τQ2 lnQ/α,
and thereforeτ > 0.

We first show thatpi − pi+1, the length that is reduced in theith step of the previous
procedure, is large whenδmi,pi is small.

d(T mi+1+pi x, T mi+1+pi+1x) 6 d(T mi+1+pi x, T mi+1x) + d(T mi+1+pi+1x, T mi+1x)

6 Kmi+1−mi d(T mi+pi x, T mi x) + d(T mi+1+pi+1x, T mi+1x)

= Kmi+1−mi δmi,pi + δmi+1,pi+1

6 (Kmi+1−mi +Q)δmi,pi , (4.6)

where the last step follows from (4.4).
Sincemi + pi > mi+1 + pi+1, we havemi+1−mi < pi − pi+1. Thus (4.6) gives

d(T mi+1+pi x, T mi+1+pi+1x) < (Kpi−pi+1 +Q)δmi,pi . (4.7)

Let δ∗ = (K2 lnQ/α +Q)−1τ > 0, whereτ is defined in equation (4.5). Then (4.7) implies
for δmi,pi 6 δ∗, we have

pi − pi+1 > 2 lnQ/α. (4.8)

By hypothesis,Sm0,p0 can be chosen withp0 arbitrarily large. Choosep0 to be sufficiently
large such thatδm0,p0 < (δ∗)2. Define

n∗ =
[

ln(δ∗/δm0,p0)

lnQ

]
, (4.9)

where [· ] denotes taking the integer part. For 06 i 6 n∗, we have

δmi,pi 6 Qiδm0,p0 6 Q
ln(δ∗/δm0,p0 )

lnQ · δm0,p0 = δ∗.
Thus (4.8) impliespi − pi+1 > 2 lnQ/α. Hence,

p0 >

n∗∑
i=0

(pi − pi+1) > (n∗ + 1) · 2 lnQ

α
>

(
ln δ∗ − ln δm0,p0

lnQ

)
· 2 lnQ

α

= − 2

α
(ln δm0,p0 − ln δ∗) > − ln δm0,p0

α
. (4.10)

Inequality (4.10) yieldsδm0,p0 > exp(−αp0), a contradiction. �
Theorem 4.6 then follows from the following two lemmas.
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Lemma 4.10. If {T ix} is in class I, then for everyε > 0, there exists a periodic pointym,p
such that〈f + εf̃m,p〉(x) < 〈f + εf̃m,p〉(ym,p) (whereym,p andf̃m,p are defined earlier in this
section, after recursive segments). In particular,{T ix} is non-optimal forf + εf̃m,p.

Lemma 4.11.The conclusion of lemma 4.10 also holds if{T ix} is in class II.

Proof of lemma 4.10.If there exists a periodic orbit inω(x), then by applying corollary 3.2
and proposition 4.1, we are done. Thus, we need only to consider the case where there are no
periodic orbits inω(x).

Since {T ix} is in class I, for givenρ > 8c0, we can choose a recursive segment
Sm,p := {T ix}m+p−1

i=m such thatγm,p/δm,p > ρ. Further,we can chooseδm,p small enough
that Sm,p is (c0δm,p)-shadowed by the period-p orbit {T iym,p}p−1

i=0 . Let y = ym,p. Notice
that the smallest separation between any two points inO(y) is bounded from below by
γm,p − 2c0δm,p > 3γm,p/4. SinceM is compact, by makingp sufficiently large, we can
makeγm,p < σ for all m, whereσ is an expansivity constant as defined in the proof of
proposition 4.1. Let

δ0 = inf
i,j
d(T ix, T jy) > 0. (4.11)

Fixing y (and hencep), we now change our selection ofSm,p, if necessary, so thatδm,p <
2Kpδ0. To avoid confusion, we useδoldm,p andγ oldm,p to denote the corresponding terms for the
initially selectedSm,p. We haveδm,p 6 δoldm,p and

γm,p >
3γ oldm,p

4
− 2c0δm,p >

γ oldm,p

2
,

henceγm,p/δm,p > γ oldm,p/(2δ
old
m,p) > ρ/2. Therefore, the recursive segmentSm,p selected in

this way can have arbitrarily large ratioγm,p/δm,p.
From proposition 3.1(b),

〈f 〉(ym,p) > 〈f 〉(x)− c0c1δm,p

p
. (4.12)

Using a technique similar to the proof of proposition 4.1, we divide{T ix} into infinitely
many segments such that each segment{T kx, . . . , T k+`x} has the following properties: (a)
there existsj > 0 such thatd(T k+ix, T j+iy) 6 γm,p/(8K), for 0 6 i < `; and (b)
d(T k+`x,O(y)) > γm,p/(8K). (Some segments will havè= 0.) To see that{T ix} can be
divided in this way, we notice thatγm,p < σ . Hence ifd(T kx, T jy) 6 γm,p/(8K), then there
exists a smallest̀such thatd(T k+`x, T j+`y) > γm,p/(8K). Sinced(T k+`x, T j+`y) 6 γm,p/8,
and the smallest separation between any two points inO(y) is bounded from below by 3γm,p/4,
we have

d(T k+`x,O(y)) = d(T k+`x, T j+`y) > γm,p/(8K).

From lemma 3.8(b),

d(T k+ix, T j+iy) 6 c0λ
min(i,`−1−i)γm,p, for 06 i < `. (4.13)

From (4.13),δ0 6 c0λ
−1+`/2γm,p, whereδ0 is defined in equation (4.11), so

` 6 2 ln(c0γm,p/δ0)

ln(1/λ)
+ 2. (4.14)



1220 G Yuan and B R Hunt

Recall the definition (4.3) of̃fm,p. Sinceδm,p < 2Kpδ0,

〈f̃m,p〉(ym,p)− 1

` + 1

∑̀
i=0

f̃m,p(T
k+ix) = 1

` + 1

∑̀
i=0

d(T k+ix,O(y)) >
1

` + 1
· γm,p

8K

> ln(1/λ)

2 ln(c0γm,p/δ0) + 3 ln(1/λ)
· γm,p

8K

>
ln(1/λ)

2 ln(2c0Kpγm,p/δm,p) + 3 ln(1/λ)
· γm,p

8K
. (4.15)

Since (4.15) is true for every segment{T kx, . . . , T k+`x},

〈f̃m,p〉(ym,p)− 〈f̃m,p〉(x) > ln(1/λ)

2 ln(2c0γm,p/δm,p) + 2p lnK + 3 ln(1/λ)
· γm,p

8K
. (4.16)

Givenε > 0, for sufficiently largeγm,p/δm,p, we have

γm,p

δm,p
>

8c0c1K[2 ln(2c0γm,p/δm,p) + 2p lnK + 3 ln(1/λ)]

εp ln(1/λ)
.

Therefore,

c0c1δm,p

p
<

ε ln(1/λ)

2 ln(2c0γm,p/δm,p) + 2p lnK + 3 ln(1/λ)
· γm,p

8K
. (4.17)

Combining (4.16) and (4.17), together with (4.12), yields〈f + εf̃m,p〉(x) < 〈f +
εf̃m,p〉(ym,p). �

Remark 4.12. Using more involved arguments, we can prove for{T ix} in class I that for
all ε > 0, there existym,p and f̃m,p such that〈f + εf̃m,p〉(z) < 〈f + εf̃m,p〉(ym,p), for all
measure-recurrent orbits{T iz} that are different from{T iym,p}; so, {T iym,p} is an optimal
periodic orbit forf + εf̃m,p.

Though we believe that there exist orbits in class II, it is not clear to us that there are any
orbits not in class I. If all orbits are in class I, then remarks 4.5 and 4.12 imply that the set
of functions with optimal periodic orbits contains an open and dense subset of the Lipschitz
functions. By remarks 4.2 and 4.8, the same would then be true for the space ofC1 functions.
Thus, we claim that conjecture 1.1 follows from the following conjecture.

Conjecture 4.13.For axiom A or uniformly expandingT , all orbits ofT are in class I.

The following lemma will be used in the proof of lemma 4.11.

Lemma 4.14.There existsN0 > 0, such that for any recursive segmentSm,p with p > 2N0,
the following properties hold.

(a) d(T iym,p, T jym,p) > δm,p/2, forN0 6 i < j 6 p −N0.
(b) For every segment{T j+ix}si=0 that stays in the δm,p/(4K)-neighbourhood of
{T N0y, T N0+1, . . . , T p−N0y}, there existsk betweenN0 and p − N0 such that
d(T j+ix, T k+iy) < δm,p/(4K) for 0 6 i 6 s. (Recall thatK is an upper bound on
‖DT ‖.)

Proof. Let us first prove part (a). Since Sm,p is a recursive segment, we have
d(T m+ix, T m+j x) > δm,p for 06 i < j 6 p. Lemma 3.8(a) implies

d(T m+ix, T iym,p) < c0λ
min(i,p−i)δm,p, for 06 i 6 p.
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Let N0 = [ln(4c0)/ ln(1/λ)] + 1, where [·] denotes the integer part of a number. Then
for N0 6 i 6 p − N0, we haved(T m+ix, T iym,p) < c0λ

N0δm,p 6 δm,p/4. Thus, if
N0 6 i < j 6 p −N0, then

d(T iym,p, T
jym,p) > d(T m+ix, T m+j x)− d(T iym,p, T m+ix)

−d(T jym,p, T m+j x) > δm,p

2
.

Next we prove part (b). Notice that there exists a uniquek betweenN0 andp − N0

such thatd(T jx, T ky) < δm,p/(4K). It follows that d(T j+1x, T k+1y) < δm,p/4. From
(a), d(T j+1x, T k+1y) = minN0<i6p−N0 d(T

j+1x, T iy). Therefore from our assumption,
d(T j+1x, T k+1y) < δm,p/(4K). By repeating the previous procedure, we prove that
d(T j+ix, T k+iy) < δm,p/(4K), for 06 i 6 s. �

Proof of lemma 4.11.Suppose there existsε > 0 such that for everySm,p, 〈f + εf̃m,p〉(x) >
〈f + εf̃m,p〉(ym,p) . We will prove that{T ix}∞i=0 is not in class II, i.e., it can be exponentially
approximated by periodic orbits, a contradiction.

Letµx be the measure generated byx. Then

〈f̃m,p〉(ym,p)− 〈f̃m,p〉(x) =
∫
d(z,O(ym,p))µx(dz). (4.18)

From proposition 3.1(b),

〈f 〉(ym,p)− 〈f 〉(x) > −c0c1δm,p

p
. (4.19)

Since〈f + εf̃m,p〉(ym,p) 6 〈f + εf̃m,p〉(x), (4.18) and (4.19) yield∫
d(z,O(ym,p))µx(dz) <

c0c1δm,p

εp
. (4.20)

Assumeε < c0c1K; if not, replaceε by a smaller value. LetSm0,p0 be a recursive
segment such thatp0 > 100c0c1KN0/ε, whereN0 is as in lemma 4.14,δm0,p0 < 4Kε0,
where ε0 is as in lemma 3.8, andδm,p > δm0,p0 for all p < p0 and m > 0. Let
n = [εp0/(100c0c1KN0)] > 1, where [·] again denotes the integer part of a number. Notice
that 12nN0 < p0 andn > εp0/(200c0c1KN0). We divide{T ix} into segments of length
12nN0 such that each segment has one and only one of the following properties: (a) it contains
only points in theδm0,p0/(4K)-neighbourhood ofO(ym0,p0)—we say such a segment is an
inner segment; (b) it contains at least one point that is not in theδm0,p0/(4K)-neighbourhood
of O(ym0,p0) – we say such a segment is an outer segment. Lety = ym0,p0, and1 =
{T p−N0+1y, T p−N0+2y, . . . , T py = y, T y, T 2y, . . . , T N0−1y}. We claim that there cannot
exist two points in the same inner segment that are both in theδm0,p0/(4K)-neighbourhood of
the same point in1; otherwise there exists a segmentSm,p with δm,p < δm0,p0/(2K) < δm0,p0

andp < 12nN0 < p0, which is a contradiction. Thus, in each inner segment there are
at most 2N0 points in theδm0,p0/(4K)-neighbourhood of1. After removing 2N0 points
from a segment of length 12nN0 > 4n(2N0 + 1), a continuous segment of length at least 4n

must remain. Therefore, each inner segment contains a subsegment{T j ′+ix}4n−1
i=0 that stays

in the δm0,p0/(4K)-neighbourhood ofO(y) \ 1. Lemma 4.14 implies that this subsegment
δm0,p0/(4K)-shadows a segment ofO(y). From lemma 3.8(b),

d(T j
′+ix,O(ym0,p0)) 6 2c0λ

min(i,4n−1−i)δm0,p0, for 06 i < 4n. (4.21)

In particular, ifn 6 i < 3n, then (4.21) implies

d(T j
′+ix,O(ym0,p0)) 6 2c0λ

nδm0,p0 < 2c0λ
εp0/(200c0c1KN0)δm0,p0. (4.22)
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Let α = ε ln(1/λ)/(8000c0c1KN
2
0 ). Then from (4.22) we have

d(T j
′+ix,O(ym0,p0)) < 2c0e−40αN0p0δm0,p0. (4.23)

Thus, each inner segment contains at least 2n points that lie within 2c0 exp(−40αN0p0)δm0,p0

of O(ym0,p0).
We claim that there existsk such that Ik := {T ix}k+30N0p0

i=k+1 contains at least
100c0c1KN0/ε inner segments, and thus contains at least 200c0c1KnN0/ε points in the
2c0 exp(−40αN0p0)δm0,p0-neighbourhood ofO(ym0,p0). To prove this claim, we first observe
that from (4.20) there existsk, such that

1

30N0p0

k+30N0p0∑
i=k+1

d(T ix,O(ym0,p0)) <
c0c1δm0,p0

εp0
.

The average ofd(T ix,O(ym0,p0)) over each outer segment is larger thanδm0,p0/(48KnN0) >

2c0c1δm0,p0/(εp0) (recall thatn = [εp0/(100c0c1KN0)]). Thus, at least half of the total points
in Ik are contained in either an inner segment or a partial segment at the beginning or end of
Ik. We conclude that there must be at least 15N0p0/(12nN0) − 2 > 125c0c1KN0/ε − 2 >
100c0c1KN0/ε inner segments.

Since 200c0c1KnN0/ε > p0, there are at least two points,T m1x and T m1+p1x with
p1 < 30N0p0, within 2c0 exp(−40αN0p0)δm0,p0 of the same point inO(ym0,p0); hence their
distance is less than 4c0e−40αN0p0δm0,p0. We can choosep0 as large as we want; assume then
that 4c0e−10αN0p0 < 1. Moreover, we can chooseSm1,p1 to be a recursive segment. Then
δm1,p1 < e−30αN0p0δm0,p0 < e−αp1δm0,p0.

Repeat the previous arguments to construct a sequence of recursive segments{Smi,pi }∞i=0

for which δmi,pi < e−αpi δmi−1,pi−1 < exp(−α∑i
j=1pj )δm0,p0. In particular,δmi,pi → 0 as

i → ∞. By our assumption that{T ix} is in class II,ω(x) contains no periodic orbits, and
thus we must have limi→∞ pi = ∞. On the other hand, we can chooseα′ ∈ (0, α) such that
δmi,pi < e−αpi δm0,p0 < e−α

′pi , which contradicts the assumption that{T ix} is in class II. �

5. Summary

We have discussed some basic properties of optimal orbits (in the sense of definition 2.1).
Assuming that the dynamical system is given by either an axiom A diffeomorphism or
a uniformly expanding non-invertible map, our main questions are the plausibility of
conjecture 1.1, which was inspired by numerical results and heuristic arguments [1, 2], and
question 1.2.

In recent years, the idea that periodic orbits act as the skeleton (see [15], for example) of
dynamical systems has become popular, and people have been using such ideas in computing
certain average quantities (such as entropy and Lyapunov exponents) in dynamical systems.
The investigation of periodic orbits as optimal orbits should offer new insights into the important
role of periodic orbits in dynamical systems. In this paper, we try to study this problem from
a mathematical point of view.

Our main discussion about conjecture 1.1 is presented in section 4. LetFx be the set
of Lipschitz functionsf such thatO(x) is optimal. In proposition 4.1, we prove that if
x is periodic, thenFx contains an open subset; on the other hand, ifx generates a non-
periodic invariant measure, then theorem 4.6 implies thatFx contains no open subset. Let
Fper =

⋃{Fx : x is periodic}. Notice that conjecture 1.1 can be equivalently restated as
follows: for a givenT , Fper contains an open and dense subset. In proposition 4.1, we prove
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thatFper contains an open subset. Furthermore, in theorem 4.6, we prove that each non-
periodic optimal orbit loses optimality under certain small perturbations off . Remarks 4.2
and 4.8 show how to apply these results to the space ofC1 functions. Hence, to complete the
proof of conjecture 1.1, it remains to be proved (based on remark 4.5) that the perturbations
constructed in the proof of theorem 4.6, or some other small perturbations, make a periodic
orbit optimal. As we stated in remark 4.12, the proof of lemma 4.10 can be extended to prove
for class I orbits that the previous statement is true.

Although we divide orbits into two classes, these classes may overlap, and indeed class I
may contain all orbits. Though we believe that it is possible, with some effort, to construct for
the mapx 7→ 2x(mod 1) an orbit that is in class II, consideration of this map, which can be
done entirely through symbolic dynamics, makes us doubt that an orbit outside class I exists.
This leads us to formulate conjecture 4.13, which we think is an interesting question in its own
right, especially in the case ofx 7→ 2x(mod 1), where it can be formulated as a combinatorial
problem on symbol sequences. A positive answer to this conjecture for any class of hyperbolic
maps would allow us to complete the proof of conjecture 1.1 for that class. We emphasize
though, that we believe conjecture 1.1 holds regardless of whether conjecture 4.13 does.

We gave a preliminary answer to question 1.2 in corollary 3.4, in the sense that we
gave a bound on the rate at which the maximum average of a given performance function
f over periodic orbits up to a given periodp converges to the optimal average asp
increases. Specifically, we showed that ifdp is the difference between these two averages,
thendp 6 Cp−1/m, wherem is the dimension of the ambient manifold. As we suggested in
remark 3.5, the bound could probably be improved significantly by getting a better idea of
the ‘worst case’ metric recurrence properties of an arbitrary trajectory{T ix}, in the following
sense. Define, as in remark 3.5,εp to be the closest recurrence in the trajectory withinp
iterations; thendp 6 Cεp. How quickly mustεp approach 0 asp increases? Again, we think
this is an interesting question in its own right, and what the ‘worst case’ trajectory is from this
point of view seems very unclear even forx 7→ 2x(mod 1); again for this map the problem
can be considered combinatorially in terms of symbol sequences.
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